K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2018

a ) \(\left(2a+b\right)^2-\left(2a+b\right)\left(2a-b\right)-2a\left(b-a\right)\)

\(=4a^2+4ab+b^2-\left(4a^2-b^2\right)-2ab+2a^2\)

\(=4a^2+4ab+b^2-4a^2+b^2-2ab+2a^2\)

\(=2a^2+2ab+2b^2\)

\(=\left(a^2+2ab+b^2\right)+a^2+b^2\)

\(=\left(a+b\right)^2+a^2+b^2\)

b ) \(\left(a+b-c\right)^2-\left(a+b\right)^2+2c\left(a+b\right)\)

\(=\left(a+b\right)^2-2\left(a+b\right)c+c^2-\left(a+b\right)^2+2c\left(a+b\right)\)

\(=\left[\left(a+b\right)^2-\left(a+b\right)^2\right]+\left[2c\left(a+b\right)-2\left(a+b\right)c\right]+c^2\)

\(=c^2\)

12 tháng 9 2018

@Khôi Bùi

\(\left(2a+b\right)^2-\left(2a+b\right)\left(2a-b\right)-2a\left(b-a\right)\)

\(=\left(2a+b\right)\left[\left(2a+b\right)-\left(2a-b\right)\right]-2a\left(b-a\right)\)

\(=2b\left(2a+b\right)-2a\left(b-a\right)\)

\(=4ab+2b^2-2ab+2a^2=2\left(a^2+ab+b^2\right)\)

\(\left(a+b-c\right)^2-\left(a+b\right)^2+2c\left(a+b\right)\)

\(=\left(a+b-c+a+b\right)\left(a+b-c-a-b\right)+2c\left(a+b\right)\)

\(=-c\left(2a+2b-c\right)+2c\left(a+b\right)=\)

\(-2c\left(a+b\right)+c^2+2c\left(a+b\right)=c^2\)

26 tháng 11 2020

1. Phuc will look through a new English book tomorrow.

2. Which ethnic group has the largest population in Vietnam?

25 tháng 5 2018

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)

=> bc+ac+ab=0

ta có

\(bc+ac=-ab\)

<=> \(\left(bc+ac\right)^2=a^2b^2\)

<=> \(b^2c^2+a^2c^2+2abc^2=a^2b^2\)

<=> \(b^2c^2+a^2c^2-a^2b^2=-2abc^2\)

tương tự

\(a^2b^2+b^2c^2-c^2a^2=-2ab^2c\)

\(c^2a^2+a^2b^2-b^2c^2=-2a^2bc\)

thay vào E ta đc

\(E=\dfrac{-a^2b^2c^2}{2ab^2c}-\dfrac{a^2b^2c^2}{2abc^2}-\dfrac{a^2b^2c^2}{2a^2bc}\)

=\(-\dfrac{ac}{2}-\dfrac{ab}{2}-\dfrac{bc}{2}=\dfrac{-\left(ac+ab+bc\right)}{2}=0\) (vì ac+bc+ab=0 cmt)

14 tháng 1 2022
Cho sao nha nhưng tui ko bít làm
4 tháng 7 2015

a + b = c => (a + b)² = c² <=> a²+ b² + 2ab = c² 
=> c^4 = (a² + b² + 2ab)² 
=> c^4 = a^4 + b^4 + 6a²b² + 4a^3.b + 4a.b^3 

vậy: a^4 + b^4 + c^4 = 2a^4 + 2b^4 + 6a²b² + 4a^3.b + 4a.b^3 
= 2a^4 + 2a²b² + 4a^3.b + 2b^4 + 2a²b² + 4a.b^3 + 2a²b² 
= 2a²(a² + b² + 2ab) + 2b²(b² + a² + 2ab) + 2a²b² 
= 2a²(a + b)² + 2b²(a + b)² + 2a²b² 
= 2a²b² + 2(a + b)²(a² + b²) 
= 2a²b² + 2c²(a² +b²) 
= 2a²b² + 2b²c² + 2c²a² (đpcm) 

4 tháng 7 2015

 gt: a + b = c => (a + b)² = c² <=> a²+ b² + 2ab = c² 
=> c^4 = (a² + b² + 2ab)² 
=> c^4 = a^4 + b^4 + 6a²b² + 4a^3.b + 4a.b^3 

vậy: a^4 + b^4 + c^4 = 2a^4 + 2b^4 + 6a²b² + 4a^3.b + 4a.b^3 
= 2a^4 + 2a²b² + 4a^3.b + 2b^4 + 2a²b² + 4a.b^3 + 2a²b² 
= 2a²(a² + b² + 2ab) + 2b²(b² + a² + 2ab) + 2a²b² 
= 2a²(a + b)² + 2b²(a + b)² + 2a²b² 
= 2a²b² + 2(a + b)²(a² + b²) 
= 2a²b² + 2c²(a² +b²) 
= 2a²b² + 2b²c² + 2c²a² (đpcm) 

24 tháng 10 2019

Câu hỏi của Chi Chi - Toán lớp 8 - Học toán với OnlineMath