Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Rút gọn nha:(3x-2y)(x+y)-3x(3x-2)^2+(y+3x)^3
Nhanh nha mình đang cần:))))
Câu 3 :
\(a,A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}\right):\frac{2x}{5x-5}\) ĐKXđ : \(x\ne\pm1\)
\(A=\left(\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}\right):\frac{2x}{5\left(x-1\right)}\)
\(A=\left(\frac{x^2+2x+1-x^2+2x-1}{\left(x-1\right)\left(x+1\right)}\right).\frac{5\left(x-1\right)}{2x}\)
\(A=\frac{4x}{\left(x-1\right)\left(x+1\right)}.\frac{5\left(x-1\right)}{2x}\)
\(A=\frac{10}{x+1}\)
\(B=\left(\frac{x}{3x-9}+\frac{2x-3}{3x-x^2}\right).\frac{3x^2-9x}{x^2-6x+9}.\)
ĐKXđ : \(x\ne0;x\ne3\)
\(B=\left(\frac{x}{3\left(x-3\right)}+\frac{2x-3}{x\left(3-x\right)}\right).\frac{3x\left(x-3\right)}{x^2-6x+9}\)
\(B=\left(\frac{x^2}{3x\left(x-3\right)}+\frac{9-6x}{3x\left(x-3\right)}\right).\frac{3x\left(x-3\right)}{x^2-6x+9}\)
\(B=\frac{x^2-6x+9}{3x\left(x-3\right)}.\frac{3x\left(x-3\right)}{x^2-6x+9}=1\)
Ta có : \(\frac{x}{x-3}-\frac{x^2+3x}{2x+3}\left(\frac{x+3}{x^2-3x}-\frac{x}{x^2-9}\right)\)
\(=\frac{x}{x-3}-\frac{x^2+3x}{2x+3}\left(\frac{x+3}{x\left(x-3\right)}-\frac{x}{\left(x-3\right)\left(x+3\right)}\right)\)
\(=\frac{x}{x-3}-\frac{x^2+3x}{2x+3}\left(\frac{\left(x+3\right)^2}{x\left(x-3\right)\left(x+3\right)}-\frac{x^2}{\left(x-3\right)\left(x+3\right)x}\right)\)
\(=\frac{x}{x-3}-\frac{x^2+3x}{2x+3}\left(\frac{\left(x+3\right)^2-x^2}{x\left(x-3\right)\left(x+3\right)}\right)\)
\(=\frac{x}{x-3}-\frac{x^2+3x}{2x+3}\left(\frac{x^2+6x+9-x^2}{x\left(x^2-3\right)}\right)\)
\(=\frac{x}{x-3}-\frac{x^2+3x}{2x+3}\left(\frac{3\left(2x+3\right)}{x\left(x^2-3\right)}\right)\)
\(=\frac{x}{x-3}-\frac{3x^2+9x}{x\left(x^2-3\right)}\)(mk sợ mk làm sai lắm nếu làm sai thì sory nhá)
ĐKXĐ : \(x\ne1;x\ne4\)
\(A=\frac{x^2-3x-4}{\left(x-1\right)\left(x-4\right)}=\frac{x^2-4x+x-4}{\left(x-1\right)\left(x-4\right)}=\frac{\left(x-4\right)\left(x+1\right)}{\left(x-1\right)\left(x-4\right)}=\frac{x+1}{x-1}\)
Ta có \(A=\frac{x+1}{x-1}=\frac{x-1+2}{x-1}=1+\frac{2}{x-1}\)
A \(\inℤ\Leftrightarrow\frac{2}{x-1}\inℤ\Leftrightarrow x-1\inƯ\left(2\right)\left(\text{Vì }x\inℤ\right)\)
<=> \(x-1\in\left\{1;-1;2;-2\right\}\)
<=> \(x\in\left\{2;0;3;-1\right\}\)
Vậy \(x\in\left\{2;0;3;-1\right\}\)thì A nguyên
\(\left(3x+1\right)^2-3x\left(x+1\right)\left(x-2\right)\)
\(=9x^2+6x+1-3x\left(x^2-x-2\right)\)
\(=9x^2+6x+1-3x^3+3x^2+6x\)
\(=-3x^3+12x^2+12x+1\)