Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3\sqrt{5a}-\sqrt{20a}+4\sqrt{45a}+\sqrt{a}\)\(a\ge0\)
\(\Leftrightarrow3\sqrt{5a}-2\sqrt{5a}+12\sqrt{5a}+\sqrt{a}\)
\(\Leftrightarrow13\sqrt{5a}+\sqrt{a}\)
VẬY BIỂU THỨC ĐÃ CHO \(=13\sqrt{5a}+\sqrt{a}\)
3√5a - √20a + 4√45a + √a = 3√5a - 2√5a + 4.3√5a + √a
= 3√5a - 2√5a + 12√5a + √a = 13√5a + √a
Với a\(\ge\)0,ta có
A=\(3\sqrt{5a}-\sqrt{20a}+4\sqrt{45a}+\sqrt{a}\)
A=\(3\sqrt{5a}-\sqrt{4.5a}+4\sqrt{9.5a}+\sqrt{a}\)
A=\(3\sqrt{5a}-2\sqrt{5a}+12\sqrt{5a}+\sqrt{a}\)
A=\(13\sqrt{5a}+\sqrt{a}\)
\(3\sqrt{5a}-2\sqrt{5a}+12\sqrt{5a}+\sqrt{a}\\ =\sqrt{5a}\left(3-2+12\right)+\sqrt{a}=13\sqrt{5a}+\sqrt{a}\)
a: \(=6\sqrt{a}+\dfrac{1}{3}\sqrt{a}-3\sqrt{a}+\sqrt{7}=\dfrac{10}{3}\sqrt{a}+\sqrt{7}\)
b: \(=5a\cdot5b\sqrt{ab}+\sqrt{3}\cdot2\sqrt{3}\cdot ab\sqrt{ab}+9ab\cdot3\sqrt{ab}-5b\cdot9a\sqrt{ab}\)
\(=25ab\sqrt{ab}+12ab\sqrt{ab}+27ab\sqrt{ab}-45ab\sqrt{ab}\)
\(=19ab\sqrt{ab}\)
c: \(=\dfrac{\sqrt{ab}}{b}+\sqrt{ab}-\dfrac{a}{b}\cdot\dfrac{\sqrt{b}}{\sqrt{a}}\)
\(=\sqrt{ab}\left(\dfrac{1}{b}+1\right)-\dfrac{\sqrt{a}}{\sqrt{b}}\)
\(=\sqrt{ab}\)
d: \(=11\sqrt{5a}-5\sqrt{5a}+2\sqrt{5a}-12\sqrt{5a}+9\sqrt{a}\)
\(=-4\sqrt{5a}+9\sqrt{a}\)
Do a ≥ 0 nên bài toán luôn xác định. Ta có:
(Vì a ≥ 0 nên |a| = a)
a) Ta có: \(A=\sqrt{12}+2\sqrt{27}-3\sqrt{48}\)
\(=2\sqrt{3}+6\sqrt{3}-12\sqrt{3}\)
\(=-4\sqrt{3}\)
b) Ta có: \(C=\sqrt{20a}+4\sqrt{45a}-2\sqrt{125a}\)
\(=2\sqrt{5a}+12\sqrt{5a}-10\sqrt{5a}\)
\(=4\sqrt{5a}\)
3√5a - √20a + 4√45a + √a = 3√5a - 2√5a + 4.3√5a + √a
= 3√5a - 2√5a + 12√5a + √a = 13√5a + √a