\(3-x+\sqrt{9+9x+x^2}\) với \(x\le-3\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2023

Sửa: \(3-x+\sqrt{9+6x+x^2}\)

\(=3-x+\sqrt{\left(3+x\right)^2}\)

\(=3-x+\left|3+x\right|\)

\(=3-x-\left(3+x\right)\)

\(=3-x-3-x\)

\(=-2x\)

17 tháng 6 2019

\(a,\sqrt{\left(\sqrt{x}-\sqrt{y}\right)^2\left(\sqrt{x}+\sqrt{y}\right)^2}=\left|\sqrt{x}-\sqrt{y}\right|\left(\sqrt{x}+\sqrt{y}\right)\)

                                                                                \(=\left(\sqrt{y}-\sqrt{x}\right)\left(\sqrt{x}+\sqrt{y}\right)\)

                                                                               \(=y-x\)

\(b,\frac{3-\sqrt{x}}{x-9}=\frac{3-\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=-\frac{1}{\sqrt{x}+3}\)

\(c,\frac{x-5\sqrt{x}+6}{\sqrt{x}-3}=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{\sqrt{x}-3}=\sqrt{x}-2\)

\(d,6-2x-\sqrt{9-6x+x^2}=6-2x-\sqrt{\left(3-x\right)^2}=6-2x-3+x=3-x\)

17 tháng 6 2019

\(a,\)\(\sqrt{\left(\sqrt{x}-\sqrt{y}\right)^2\left(\sqrt{x}+\sqrt{y}\right)^2}\)

\(=|\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)|\)

\(=|\sqrt{x}^2-\sqrt{y}^2|\)

\(=|x-y|\)

Vì \(x\le y\)\(\Rightarrow x-y\ge0\)

\(\Rightarrow|x-y|=x-y\)

AH
Akai Haruma
Giáo viên
5 tháng 7 2020

Lời giải:

a) \(A=4\sqrt{x}-\frac{(\sqrt{x}+3)^2(\sqrt{x}-3)}{x-9}=4\sqrt{x}-\frac{(\sqrt{x}+3)(x-9)}{x-9}=4\sqrt{x}-(\sqrt{x}+3)\)

\(=3\sqrt{x}-3\)

b)

\(B=\frac{\sqrt{9x^2+12x+4}}{3x+2}=\frac{\sqrt{(3x)^2+2.3x.2+2^2}}{3x+2}=\frac{\sqrt{(3x+2)^2}}{3x+2}=\frac{|3x+2|}{3x+2}\)

\(B=1\) nếu $x>\frac{-2}{3}$

$B=-1$ nếu $x< \frac{-2}{3}$

1 tháng 6 2021

a, Với \(-4\le x\le4\)

 \(A=\sqrt{x^2+8x+16}+\sqrt{x^2-8x+16}\)

\(=\sqrt{\left(x+4\right)^2}+\sqrt{\left(x-4\right)^2}=\left|x+4\right|+\left|x-4\right|\)

b, \(B=\sqrt{9x^2-6x+1}+\sqrt{4x^2-12x+9}\)

\(=\sqrt{\left(3x\right)^2-2.3x+1}+\sqrt{\left(2x\right)^2-2.2x.3x+3^2}\)

\(=\sqrt{\left(3x-1\right)^2}+\sqrt{\left(2x-3\right)^2}=\left|3x-1\right|+\left|2x-3\right|\)

1 tháng 10 2021

-\(x+3+\sqrt{x^2-6x+9}\)

\(=x+3+\left|x\right|-6x+9\)

\(x< 0\)

\(--->x+3-x-6x+9\)

\(=\left(x-x\right)-6x+3+9\)

\(=-6x+\left(3+9\right)=-6x+12\)

\(x>0\)

\(--->3+x+x-6x+9\)

\(=\left(x+x-6x\right)+\left(3+9\right)\)

\(=\left(2x-6x\right)+12\)

\(=4x+12\)

2 tháng 10 2021

a) A=6
b) B=1
 

1 tháng 6 2021

điều kiện -4<=x<=4x<=4

\(a,\sqrt{\left(x+4\right)^2}+\sqrt{\left(x-4\right)^2}\)

\(A=\left|x+4\right|+\left|x-4\right|\)

KẾT HỢP ĐIỀU KIỆN

\(A=x+4+4-x\)

\(A=8\)

\(B=\sqrt{\left(3x\right)^2-6x+1}+\sqrt{\left(2x\right)^2-12x+3^2}\)

\(B=\sqrt{\left(3x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)

\(B=\left|3x-1\right|+\left|2x-3\right|\)

\(TH1:x>=\frac{3}{2}\)

\(B=3x-1+2x-3\)

\(B=5x-4\)

\(TH2:\frac{1}{3}< =x< \frac{3}{2}\)

\(B=3x-1-2x+3\)

\(B=x+2\)

\(TH3:x< \frac{1}{3}\)

\(B=-3x+1-2x+3\)

\(B=4-5x\)

câu c và câu d tương tự

câu c tách ra: \(C=\sqrt{\left(\sqrt{x}-3\right)^2}-\sqrt{\left(2\sqrt{x}+1\right)^2}\)

còn câu d tách ra :\(D=\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}\)

\(D=\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}\)

bạn tự làm nốt câu c, d nha 

18 tháng 9 2016

a, \(\sqrt{4-2\sqrt{3}}-\sqrt{3}=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}=\sqrt{3}-1-\sqrt{3}=-1\)

b,\(\sqrt{11+6\sqrt{2}}-3+\sqrt{2}=\sqrt{\left(\sqrt{2}+3\right)^2}-3+\sqrt{2}=\sqrt{2}+3-3+\sqrt{2}=2\sqrt{2}\)

c, \(\sqrt{9x^2}-2x=\sqrt{\left(3x\right)^2}-2x=3x-2x=x\)

d, câu này sai đề rồi , nếu sửa lại phải như này :

\(x-4+\sqrt{16-8x+x^2}=x-4+\sqrt{\left(4-x\right)^2}=x-4+4-x=0\)

23 tháng 6 2017

a) \(\sqrt{4-2\sqrt{3}}-\sqrt{3}=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}\)=\(\sqrt{3}-1-\sqrt{3}=-1\)

b) \(\sqrt{11+6\sqrt{2}}-3+\sqrt{2}\) = \(\sqrt{\left(3+\sqrt{2}\right)^2}-3+\sqrt{2}\)

= \(3+\sqrt{2}-3+\sqrt{2}\) = \(2\sqrt{2}\)

c) \(\sqrt{9x^2}-2x=\sqrt{\left(3x\right)^2}-2x\) = \(\left|3x\right|-2x=-3x-2x\) (x < 0)

= \(-5x\)

d) \(x-4+\sqrt{16-8x+x^2}\) \(\left(x>4\right)\) = \(x-4+\sqrt{\left(4-x\right)^2}\)

= \(x-4+\left|4-x\right|\) = \(x-4-4+x\) ( \(x>4\))

= \(2x-8\)

12 tháng 6 2017

a)   \(2x-\sqrt{4x^2+4x+1}=2x-\sqrt{\left(2x+1\right)^2}=2x-\left|2x+1\right|\)

Vì   \(x< -\frac{1}{2}\)nên   \(\left|2x+1\right|=-\left(2x+1\right)\)

\(\Rightarrow2x+2x+1=4x+1\)

b) \(3x+2-\sqrt{9x^2-12x+4}=3x+2-\sqrt{\left(3x-2\right)^2}=3x+2-\left|3x-2\right|\)

Khi   \(x\ge\frac{2}{3}\)thì   \(\left|3x-2\right|=3x-2\)

\(\Leftrightarrow3x+2-\left|3x-2\right|=3x+2-3x+2=4\)

Khi     \(x< \frac{2}{3}\)  thì  \(\left|3x-2\right|=2-3x\)

\(\Leftrightarrow3x+2-\left|3x-2\right|=3x+2-\left(2-3x\right)=6x\)

c)  \(\sqrt{9a}-\sqrt{16a}+\sqrt{49a}=3\sqrt{a}-4\sqrt{a}+7\sqrt{a}\)

Đặt   \(\sqrt{a}=x\)  ta được :  \(3x-4x+7x=6x\)\(=6\sqrt{a}\)( Do  \(a\ge0\))

d)  \(\sqrt{160a}+2\sqrt{40a}-3\sqrt{90a}=4\sqrt{10a}+4\sqrt{10a}-9\sqrt{10a}\)\(=-\sqrt{10}\)

TK NKA !!!

30 tháng 4 2017

a, Ta có : \(4-2\sqrt{3}=3-2\sqrt{3}+1=\left(\sqrt{3}\right)^2-2\sqrt{3}\times1+1^2=\left(\sqrt{3}-1\right)^2\)

\(\Rightarrow\sqrt{4-2\sqrt{3}}-\sqrt{3}=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}=\left|\sqrt{3}-1\right|-\sqrt{3}\)

Ta có : \(\sqrt{3}>\sqrt{1}\)(vì 3>1)

\(\Leftrightarrow\sqrt{3}>1\Leftrightarrow\sqrt{3}-1>0\Rightarrow\left|\sqrt{3}-1\right|=\sqrt{3}-1\)

Ta có: \(\sqrt{4-2\sqrt{3}}-\sqrt{3}=\left|\sqrt{3}-1\right|-\sqrt{3}=\sqrt{3}-1-\sqrt{3}=-1\)

23 tháng 6 2017

a) \(\sqrt{4-2\sqrt{3}}-\sqrt{3}=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}\)=\(\sqrt{3}-1-\sqrt{3}=-1\)

b) \(\sqrt{11+6\sqrt{2}}-3+\sqrt{2}\) = \(\sqrt{\left(3+\sqrt{2}\right)^2}-3+\sqrt{2}\)

= \(3+\sqrt{2}-3+\sqrt{2}\) = \(2\sqrt{2}\)

d) \(x-4+\sqrt{16-8x+x^2}\) \(\left(x>4\right)\) = \(x-4+\sqrt{\left(4-x\right)^2}\)

= \(x-4+\left|4-x\right|\) = \(x-4-4+x\) (vì \(x>4\))

= \(2x-8\)

29 tháng 9 2020

Với  x<-3 ta có:

\(x+3+2\sqrt{x^2-9}=\sqrt{-\left(x+3\right)}.\sqrt{-\left(x+3\right)}+2\sqrt{-\left(x+3\right)}.\sqrt{3-x}\)

\(=\sqrt{-\left(x+3\right)}.\left(\sqrt{-\left(x+3\right)}+2\sqrt{3-x}\right)\)

\(6-2x+\sqrt{x^2-9}=\sqrt{3-x}\left(2\sqrt{3-x}+\sqrt{-\left(x+3\right)}\right)\)

Từ đó suy ra \(M=\frac{\sqrt{-\left(x+3\right)}}{\sqrt{3-x}}hayM=\sqrt{\frac{\left(x+3\right)}{\left(x-3\right)}}\)