Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= (937.1 - 4.5) - (-4.5 + 37.1) -100
= (937-20) - 17 -100
= 917- 17-100
=900-100=800
a) \(\frac{75^3.3^7}{81^4.5^6}=\frac{5^3.3^3.5^3.3^7}{\left(3^4\right)^4.5^6}=\frac{5^6.3^3.3^7}{3^{16}.5^6}=\frac{3^{10}}{3^{16}}=\frac{1}{3^6}=\frac{1}{729}\)
b) \(\frac{6^6.4^2}{3^{12}.2^8}=\frac{2^6.3^6.\left(2^2\right)^2}{3^{12}.2^8}=\frac{2^6.3^6.2^4}{3^{12}.2^8}=\frac{2^{10}.3^6}{3^{12}.2^8}=\frac{2^2.1}{3^6}=\frac{4}{729}\)
c) \(\frac{34^5.2^5}{2^{14}.17^5}=\frac{2^5.17^5.2^5}{2^{14}.17^5}=\frac{2^{10}}{2^{14}}=\frac{1}{2^4}=\frac{1}{16}\)
1: =1/8*9/4=9/32
2: =8/27*243/32=9/4
3: =(5/4*4/5)^5*(4/5)^2=16/25
4: \(=\left(-\dfrac{5}{6}\cdot\dfrac{6}{5}\right)^2\cdot\left(\dfrac{6}{5}\right)^2=\dfrac{36}{25}\)
5: \(=\left(-\dfrac{4}{3}\right)^3\cdot\left(\dfrac{3}{4}\right)^{10}=\left(-1\right)\left(\dfrac{3}{4}\right)^7=-\left(\dfrac{3}{4}\right)^7\)
6: \(=\left(\dfrac{1}{3}\cdot\dfrac{-9}{2}\right)^4\left(-\dfrac{9}{2}\right)^2=\left(-\dfrac{3}{2}\right)^4\cdot\dfrac{81}{4}=\dfrac{9}{4}\cdot\dfrac{81}{4}=\dfrac{729}{16}\)
8: =(0,2*5)^4*5^2=25
10: =-0,5^5*2^10
=-0,5^5*2^5*2^5
=-32
13: =(0,5*2)^2*2^2=4
\(A=\frac{4^5.9^4-2.6^9}{2^{10}.3^8-6^8.20}\)
\(A=\frac{\left(2^2\right)^5.\left(3^2\right)^4-2.\left(2.3\right)^9}{2^{10}.3^8-\left(2.3\right)^8.2^2.5}\)
\(A=\frac{2^{10}.3^8-2^{10}.3^9}{2^{10}.3^8-2^{10}.3^8.5}\)
\(A=\frac{2^{10}.\left(3^8-3^9\right)}{2^{10}.3^8.\left(1-5\right)}=\frac{3^8-3^9}{3^8.\left(-4\right)}=\frac{3^8.\left(1-3\right)}{3^8.\left(-4\right)}=\frac{-2}{-4}=\frac{1}{2}\)
Vậy A = \(\frac{1}{2}\)
\(B=\frac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}\)
\(B=\frac{2^{19}.\left(3^3\right)^3+3.5.\left(2^2\right)^9.\left(3^2\right)^4}{\left(2.3\right)^9.2^{10}+\left(2^2.3\right)^{10}}\)
\(B=\frac{2^{19}.3^9+3.5.2^{18}.3^8}{2^9.3^9.2^{10}+2^{20}.3^{10}}\)
\(B=\frac{2^{19}.3^9+3^9.2^{18}.5}{2^{19}.3^9+2^{20}.3^{10}}\)
\(B=\frac{2^{18}.3^9.\left(2+5\right)}{2^{19}.3^9\left(1+2.3\right)}=\frac{7}{2.7}=\frac{1}{2}\)
Vậy B = \(\frac{1}{2}\)