Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2+2^2+2^3+...+2^{11}+2^{12}\)
\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+\left(2^7+2^8+2^9\right)+\left(2^{10}+2^{11}+2^{12}\right)\)
\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+2^7\left(1+2+2^2\right)+2^{10}\left(1+2+2^2\right)\)
\(=7\left(2+2^4+2^7+2^{10}\right)\)chia hết cho \(7\).
a)\(\frac{3^{10}.\left(-5\right)^{21}}{\left(-5\right)^{20}.3^{12}}=\frac{-5}{9}\)
b)\(\frac{\left(-11\right)^5.13^7}{11^5.13^8}=-\frac{1}{13}\)
c)\(\frac{2^{10}.3^{10}-2^{10}.3^9}{2^9.3^{10}}=\frac{2^{10}.3^9\left(3-1\right)}{2^9.3^{10}}=2\)
d(\(\frac{5^{11}.7^{12}+5^{11}.7^{11}}{5^{12}.7^{12}+9.5^{11}.7^{11}}=\frac{5^{11}.7^{11}\left(7+1\right)}{5^{11}.7^{11}\left(35+9\right)}=\frac{1}{6}\)
Bài 1: a) \(M=1+5+5^2+...+5^{100}\)
\(5M=5+5^2+5^3+...+5^{101}\)
\(5M-M=\left(5+5^2+5^3+...+5^{101}\right)-\left(1+5+5^2+...+5^{100}\right)\)
\(4M=5^{101}-1\)
\(M=\frac{5^{101}-1}{4}\)
b) \(N=2+2^2+...+2^{100}\)
\(2N=2^2+2^3+...+2^{101}\)
\(2N-N=\left(2^2+2^3+...+2^{101}\right)-\left(2+2^2+...+2^{100}\right)\)
\(N=2^{101}-2\)
Bài 2:
a) \(16^{32}=\left(2^4\right)^{32}=2^{128}\)
\(32^{16}=\left(2^5\right)^{16}=2^{80}\)
Vì \(2^{128}>2^{80}\Rightarrow16^{32}>32^{16}\)
a,\(\dfrac{3^6.5^7.7^{11}}{3^4.5^7.7^{10}}=\dfrac{3^4.3^2.5^7.7^{10}.7}{3^4.5^7.7^{10}}\) \(=9.7=63\)
b,\(\dfrac{2^{43}+2^4}{2^{39}+1}=\dfrac{2^{39}.2^4+2^4}{2^{39}+1}\) \(=\dfrac{2^4\left(2^{39}+1\right)}{2^{39}+1}=16\)
\(\frac{2^3\cdot5^2\cdot11^2\cdot7}{2^3\cdot5^3\cdot7^2\cdot11}\)
\(=\frac{2^3\cdot5^2\cdot11\cdot11\cdot7}{2^3\cdot5^2\cdot5\cdot7\cdot7\cdot11}\)
\(=\frac{11}{5\cdot7}=\frac{11}{35}\)
ta có 2^3*5^2*11^2*(7/2)^3*5^3*7^2*11
=(2^3*(7/2)^3*7^2)*(5^2*5^3)*(11^2*11)
=(2^3*7^3/2^3*7^2)*5^5*11^3
=7^5*5^5*11^3