\(x^2\)-3\(x^4\)+403x+1198\(x^3\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2018

Nếu \(x=400\Rightarrow\left\{{}\begin{matrix}799=2x-1\\403=x+3\\1198=3x-2\\1203=3\left(x+1\right)\end{matrix}\right.\)( * )

Thay ( * ) vào R , ta được :

\(R=\left(2x-1\right)x^2-3x^4+\left(x+3\right)x+\left(3x-2\right)x^3-3\left(x+1\right)\)

\(=2x^3-x^2-3x^4+x^2+3x+3x^4-2x^3-3x-3\)

\(=\left(2x^3-2x^3\right)+\left(3x^4-3x^4\right)+\left(x^2-x^2\right)+\left(3x-3x\right)-3\)

\(=-3\)

Vậy \(R=-3\) tại \(x=400\)

8 tháng 10 2018

Cảm ơn bạn nha!hihi

27 tháng 8 2020

a) (7x + 4)2 - (7x + 4)(7x - 4)

= 49x2 + 56x + 16 - 49x2 + 16

= 56x + 32

b) (x - 2y)3 - 6xy(x - 2y)

= x3 - 6x2y + 12xy2 - 8y3 - 6x2y + 12xy2

= x3 - 12x2y + 24xy2 - 8y3

c) (3x + y)(9x2 - 3xy + y2) - (3xy)3 - 27x2y

= 27x3 + y3 - (3xy)3 - 27x2y

d) 5(x + 3)(x - 3) + (2x + 3)2 + (x - 6)2

= 5x2 - 45 + 4x2 + 12x + 9 + x2 - 12x + 36

= 10x2

e) (2x + 3)2 + (2x - 3)2 - 2(4x2 - 9)

= (2x + 3)2 + (2x - 3)2 - 2(2x - 3)(2x + 3)

= (2x + 3 - 2x + 3)2

= 62 = 36

g) (x + 2)3 + (x - 2)3 + x3 - 3x(x - 2)(x + 2)

= (x+2+x-2)(x2 + 4x + 4 - x2 + 4 + x2 - 4x + 4) + x3 - 3x3 + 12x

= 2x(x2 + 8) + x3 - 3x3 + 12x

= 2x3 + 16x + x3 - 3x3 + 12x

= 28x

27 tháng 8 2020

vậy bạn có thể ib với mình để giúp mình ý g đc k ?

a: \(=\dfrac{x^2+2x+1-x^2+2x-1}{\left(x-1\right)\left(x+1\right)}:\left(\dfrac{1}{x+1}+\dfrac{x}{x-1}+\dfrac{2}{\left(x-1\right)\left(x+1\right)}\right)\)

\(=\dfrac{4x}{\left(x-1\right)\left(x+1\right)}:\dfrac{x-1+x^2+x+2}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{4x}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{\left(x-1\right)\left(x+1\right)}{x^2+2x+1}=\dfrac{4x}{x^2+2x+1}\)

b: \(=\dfrac{x+2}{-\left(x-2\right)}\cdot\dfrac{\left(x-2\right)^2}{4x^2}\cdot\left(\dfrac{2}{2-x}-\dfrac{4}{\left(x+2\right)\left(x^2-2x+4\right)}\cdot\dfrac{x^2-2x+4}{2-x}\right)\)

\(=\dfrac{-\left(x+2\right)\left(x-2\right)}{4x^2}\cdot\left(\dfrac{2}{2-x}-\dfrac{4}{\left(x+2\right)\left(2-x\right)}\right)\)

\(=\dfrac{-\left(x+2\right)\left(x-2\right)}{4x^2}\cdot\dfrac{2x+4-4}{\left(2-x\right)\left(x+2\right)}\)

\(=\dfrac{2x}{4x^2}=\dfrac{1}{2x}\)

2 tháng 8 2017

a) \(\left(12x+3\right)^2-\left(x+3\right)\left(2x+6\right)-9\)

\(=144x^2+72x+9-\left(2x^2+6x+6x+18\right)-9\)

\(=144x^2+72x+9-2x^2-6x-6x-18-9\)

\(=142x^2+60x-18\)

b) \(\left(2-x\right)\left(2x+4+x^2\right)+x^2\left(x-2\right)+2x^2\)

\(=8-x^3+x^3-2x^2+2x^2\)

\(=8\)

2 tháng 8 2017

a) \(\left(12x+3\right)^2-\left(x+3\right)\left(2x+6\right)-9\)

\(=144x^2 +72x+9-2x^2-6x-6x-18-9\)

\(=142x^2+60x-18\)

b) \(\left(2-x\right)\left(2x+4+x^2\right)+x^2\left(x-2\right)+2x^2\)

\(=8-x^3+x^3-2x^2+2x^2\)

\(=8.\)

4 tháng 12 2018

a) \(\left(3x-5\right)\left(2x+3\right)-\left(2x-3\right)\left(3x+7\right)-2x\left(x-4\right)\)

\(=\left(6x^2-x-15\right)-\left(6x^2+5x-21\right)-\left(2x^2-8x\right)\)

\(=6x^2-x-15-6x^2-5x+21-2x^2+8x\)

\(=-2x^2+2x+6\)

\(=-2\left(x^2-x-3\right)\)

b) \(\left(x^2+2\right)^2-\left(x+2\right)\left(x-2\right)\left(x^2+4\right)\)

\(=\left(x^2+2\right)^2-\left(x^2-4\right)\left(x^2+4\right)\)

\(=\left(x^2+2\right)^2-\left(x^4-16\right)\)

\(=\left(x^4+4x^2+4\right)-\left(x^4-16\right)\)

\(=x^4+4x^2+4-x^4+16\)

\(=4x^2+20\)

\(=4\left(x^2+5\right)\)

c) \(\left(2x-y\right)^2-2\left(x+3y\right)^2-\left(1+3x\right)\left(3x-1\right)\)

\(=\left(4x^2-4xy+y^2\right)-2\left(x^2+6xy+9y^2\right)-\left(9x^2-1\right)\)

\(=4x^2-4xy+y^2-2x^2-16xy-18y^2-9x^2+1\)

\(=-7x^2-20xy-17y^2+1\)

d) \(\left(x^2-1\right)^3-\left(x^4+x^2+1\right)\left(x^2-1\right)\)

\(=\left(x^6-3x^4+3x^2-1\right)-\left(x^6-1\right)\)

\(=x^6-3x^4+3x^2-1-x^6+1\)

\(=-3x^4+3x^2\)

\(=-3x^2\left(x^2-1\right)\)

\(=-3x^2\left(x-1\right)\left(x+1\right)\)

e) \(\left(2x-1\right)^2-2\left(4x^2-1\right)+\left(2x+1\right)^2\)

\(=\left(2x-1\right)^2-2\left(2x-1\right)\left(2x+1\right)+\left(2x+1\right)^2\)

\(=\left[\left(2x-1\right)-\left(2x+1\right)\right]^2\)

\(=\left(2x-1-2x-1\right)^2\)

\(=\left(-2\right)^2=4\)

g) \(\left(x-y+z\right)^2+\left(y-z\right)^2-2\left(x-y+z\right)\left(z-y\right)\)

\(=\left(x-y+z\right)^2+2\left(x-y+z\right)\left(y-z\right)+\left(y-z\right)^2\)

\(=\left(x-y+z+y+z\right)^2\)

\(=\left(x+2z\right)^2\)

h) \(\left(2x+3\right)^2+\left(2x+5\right)^2-\left(4x+6\right)\left(2x+5\right)\)

\(=\left(2x+3\right)^2-2\left(2x+3\right)\left(2x+5\right)+\left(2x+5\right)^2\)

\(=\left[\left(2x+3\right)-\left(2x+5\right)\right]^2\)

\(=\left(2x+3-2x-5\right)^2\)

\(=\left(-2\right)^2=4\)

i) \(5x^2-\dfrac{10x^3+15x^2-5x}{-5x}-3\left(x+1\right)\)

\(=5x^2-\dfrac{-5x\left(-2x^2-3x+1\right)}{-5x}-3\left(x+1\right)\)

\(=5x^2-\left(-2x^2-3x+1\right)-3\left(x+1\right)\)

\(=5x^2+2x^2+3x-1-3x-3\)

\(=7x^2-4\)

Bài 3: 

a: \(\left(x-3\right)\left(x^2+3x+9\right)-x\left(x-4\right)\left(x+4\right)=21\)

\(\Leftrightarrow x^3-27-x\left(x^2-16\right)=21\)

\(\Leftrightarrow x^3-27-x^3+16x=21\)

=>16x=48

hay x=3

b: \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=4\)

\(\Leftrightarrow x^3+8-x^3-2x=4\)

=>-2x=4-8=-4

hay x=2

a: \(-3x^2\cdot\left(\dfrac{4}{3}x^2+\dfrac{2}{3}x^2-\dfrac{1}{3}\right)\)

\(=-4x^4-2x^4+x^2\)

b: \(\left(x-3y\right)\left(3x^2+5xy+4y^2\right)\)

\(=3x^3+5x^2y+4xy^2-9x^2y-15xy^2-12y^3\)

\(=3x^3-4x^2y-11xy^2-12y^3\)

c: \(\left(x+8\right)^2-2\left(x+8\right)\left(x-2\right)+\left(x-2\right)^2\)

\(=\left(x+8-x+2\right)^2\)

\(=10^2=100\)

d: \(x\left(x-4\right)\left(x+4\right)-\left(x^2+1\right)\left(x^2-1\right)\)

\(=x\left(x^2-16\right)-\left(x^2+1\right)\left(x^2-1\right)\)

\(=x^3-16x-x^4+1\)