K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2020

MTC : ( x - 1 )( x2 + x + 1 )

Ta có : \(\frac{4x^2-3x+5}{x^3-1}=\frac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(\frac{2x}{x^2+x+1}=\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{2x^2-2x}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(\frac{6}{x-1}=\frac{6\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{6x^2+6x+6}{\left(x-1\right)\left(x^2+x+1\right)}\)

25 tháng 11 2020

Hnay mới học thì hnay trả lời nhá :P

\(\frac{4x^2-3x+5}{x^3-1};\frac{2x}{x^2+x+1}\)

Ta có : \(x^3-1=\left(x-1\right)\left(x^2+x+1\right)\)

\(x^2+x+1=x^2+x+1\)

MTC : \(\left(x-1\right)\left(x^2+x+1\right)\)

\(\frac{4x^2-3x+5}{x^3-1}=\frac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(\frac{2x}{x^2+x+1}=\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{2x^2-2x}{\left(x-1\right)\left(x^2+x+1\right)}\)

25 tháng 11 2015

\(a.\) Ta có: 

 \(MTC:\)  \(\left(x+1\right)\left(x+2\right)\)

 Do đó

\(\frac{3x}{x+1}=\frac{3x\left(x+2\right)}{\left(x+1\right)\left(x+2\right)}\)

\(\frac{x+4}{x+2}=\frac{\left(x+1\right)\left(x+4\right)}{\left(x+1\right)\left(x+2\right)}\)

\(b.\)  Ta có: 

\(x^2+x=x\left(x+1\right)\)

\(x^2-1=\left(x-1\right)\left(x+1\right)\)

nên  \(MTC:\)  \(x\left(x-1\right)\left(x+1\right)\)

Do đó:

\(\frac{5}{x^2+x}=\frac{5}{x\left(x+1\right)}=\frac{5\left(x-1\right)}{x\left(x-1\right)\left(x+1\right)}\)

\(\frac{6}{x^2-1}=\frac{6}{\left(x-1\right)\left(x+1\right)}=\frac{6x}{x\left(x-1\right)\left(x+1\right)}\)

\(c.\)  Ta có:

\(x^2-5x+4=x^2-x-4x+4=x\left(x-1\right)-4\left(x-1\right)=\left(x-1\right)\left(x-4\right)\)

\(2x^2-8x=2x\left(x-4\right)\)

nên  \(MTC:\)  \(2x\left(x-1\right)\left(x-4\right)\)

Do đó: 

\(\frac{4}{x^2-5x+4}=\frac{4}{\left(x-1\right)\left(x-4\right)}=\frac{8x}{2x\left(x-1\right)\left(x-4\right)}\)

\(\frac{x+1}{2x^2-8x}=\frac{x+1}{2x\left(x-4\right)}=\frac{\left(x-1\right)\left(x+1\right)}{2x\left(x-1\right)\left(x-4\right)}\)

 

27 tháng 11 2020

Làm nốt d :P

\(\frac{x+3}{2x^2-15x-8};\frac{3}{x^2-8x}\)

Ta có : \(2x^2-15x-8=\left(2x+1\right)\left(x-8\right)\)

\(x^2-8x=x\left(x-8\right)\)

MTC : \(x\left(x-8\right)\left(2x+1\right)\)

\(\frac{x+3}{2x^2-15x-8}=\frac{x+3}{\left(2x+1\right)\left(x-8\right)}=\frac{x^2+3x}{x\left(x-8\right)\left(2x+1\right)}\)

\(\frac{3}{x^2-8x}=\frac{3}{x\left(x-8\right)}=\frac{6x+3}{x\left(x-8\right)\left(2x+1\right)}\)

16 tháng 5 2021

\(x-5=\frac{1}{3\left(x+2\right)}\left(đkxđ:x\ne-2\right)\)

\(< =>3\left(x-5\right)\left(x+2\right)=1\)

\(< =>3\left(x^2-3x-10\right)=1\)

\(< =>x^2-3x-10=\frac{1}{3}\)

\(< =>x^2-3x-\frac{31}{3}=0\)

giải pt bậc 2 dễ r

16 tháng 5 2021

\(\frac{x}{3}+\frac{x}{4}=\frac{x}{5}-\frac{x}{6}\)

\(< =>\frac{4x+3x}{12}=\frac{6x-5x}{30}\)

\(< =>\frac{7x}{12}=\frac{x}{30}< =>12x=210x\)

\(< =>x\left(210-12\right)=0< =>x=0\)

13 tháng 11 2017

https://www.youtube.com/watch?v=cFZDEMTQQCs

16 tháng 4 2020

có ai giúp minh vs nhanh lên nha 

27 tháng 11 2020

\(\frac{10}{x+2};\frac{5}{2x-4};\frac{1}{6-3x}\)

Ta có : \(x+2=x+2\)

\(2x-4=2\left(x-2\right)\)

\(6-3x=3\left(2-x\right)=-3\left(x-2\right)\)

MTC : \(-6\left(x-2\right)\left(x+2\right)\)

\(\frac{10}{x+2}=\frac{10.\left(-6\right)\left(x-2\right)}{-6\left(x-2\right)\left(x+2\right)}=\frac{-60x+120}{-6\left(x-2\right)\left(x+2\right)}\)

\(\frac{5}{2x-4}=\frac{5}{2\left(x-2\right)}=\frac{5.\left(-3\right)\left(x+2\right)}{-6\left(x-2\right)\left(x+2\right)}=\frac{-15x-30x}{-6\left(x-2\right)\left(x+2\right)}\)

\(\frac{1}{6-3x}=\frac{1}{-3\left(x-2\right)}=\frac{2\left(x+2\right)}{-6\left(x-2\right)\left(x+2\right)}=\frac{2x+4}{-6\left(x-2\right)\left(x+2\right)}\)

21 tháng 11 2017

1)

\(\dfrac{7x-1}{2x^2+6x}=\dfrac{7x-12}{x\left(x+3\right)}\)

\(\dfrac{3-2x}{x^2-9}=\dfrac{3-2x}{\left(x-3\right)\left(x+3\right)}\)

MTC: \(x\left(x-3\right)\left(x+3\right)\)

\(\dfrac{7x-1}{2x^2+6x}=\dfrac{7x-12}{x\left(x+3\right)}=\dfrac{\left(x-3\right)\left(7x-12\right)}{x\left(x-3\right)\left(x+3\right)}=\dfrac{7x^2-12x-21x+36}{x\left(x-3\right)\left(x+3\right)}=\dfrac{7x^2-33x+36}{x\left(x-3\right)\left(x+3\right)}\)

\(\dfrac{3-2x}{x^2-9}=\dfrac{3-2x}{\left(x-3\right)\left(x+3\right)}=\dfrac{ x\left(3-2x\right)}{x\left(x-3\right)\left(x+3\right)}\dfrac{3x-2x^2}{x\left(x-3\right)\left(x+3\right)}\)

2)

\(\dfrac{2x-1}{x-x^2}=\dfrac{2x-1}{x\left(1-x\right)}\)

\(\dfrac{x+1}{2-4x+2x^2}=\dfrac{x+1}{2\left(1-2x+x^2\right)}=\dfrac{x+1}{2\left(1-x\right)^2}\)

MTC: \(2x\left(1-x\right)^2\)

\(\dfrac{2x-1}{x-x^2}=\dfrac{2x-1}{x\left(1-x\right)}=\dfrac{2\left(1-x\right)\left(2x-1\right)}{2x\left(1-x\right)^2}=\dfrac{\left(2-2x\right)\left(2x-1\right)}{2x\left(1-x\right)^2}=\dfrac{4x-2-4x^2+2x}{2x\left(1-x\right)^2}=\dfrac{6x-2-4x^2}{2x\left(1-x\right)^2}\)

\(\dfrac{x+1}{2-4x+2x^2}=\dfrac{x+1}{2\left(1-2x+x^2\right)}=\dfrac{x+1}{2\left(1-x\right)^2}=\dfrac{ x\left(x+1\right)}{2x\left(1-x\right)^2}=\dfrac{x^2+x}{2x\left(1-x\right)^2}\)

21 tháng 11 2017

Phần còn lại nhé :v

3.

\(x^3+1=\left(x+1\right)\left(x^2-x+1\right)\)

\(x^2-x+1=x^2-x+1\)

\(x+1=x+1\)

MTC: \(\left(x+1\right)\left(x^2-x+1\right)\)

\(\dfrac{x-1}{x^3+1}=\dfrac{x-1}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(\dfrac{2x}{x^2-x+1}=\dfrac{2x\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(\dfrac{2}{x+1}=\dfrac{2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)

4.

\(5x\)

\(x-2y=x-2y=-\left(2y-x\right)\)

\(8y^2-2x^2=2\left(4y^2-x^2\right)=2\left(2y-x\right)\left(2y+x\right)\)

MTC: \(-10x\left(2y-x\right)\left(2y+x\right)\)

\(\dfrac{7}{5x}=\dfrac{7\left(2y-x\right)\left(2y+x\right)-2}{5x\left(2y-x\right)\left(2y+x\right)-2}=\dfrac{-14\left(2y-x\right)\left(2y+x\right)}{-10x\left(2y-x\right)\left(2y+x\right)}\)

\(\dfrac{4}{x-2y}=\dfrac{4\left(2y-x\right)\left(2y+x\right)10x}{-\left(2y-x\right)\left(2y+x\right)10x}=\dfrac{40x\left(2y-x\right)\left(2y+x\right)}{-10x\left(2y-x\right)\left(2y+x\right)}\)

\(\dfrac{x-y}{8y^2-2x^2}=\dfrac{\left(x-y\right)-5x}{2\left(2y-x\right)\left(2y+x\right)-5x}=\dfrac{-5x\left(x-y\right)}{-10x\left(2y-x\right)\left(2y+x\right)}\)

5.

\(x^3-1=\left(x-1\right)\left(x^2+x+1\right)\)

\(x^2-x=x\left(x-1\right)\)

\(x^2+x+1\)

MTC: \(x\left(x-1\right)\left(x^2+x+1\right)\)

\(\dfrac{x}{x^3-1}=\dfrac{x.x}{\left(x-1\right)\left(x^2+x+1\right)x}=\dfrac{x^2}{x\left(x-1\right)\left(x^2+x+1\right)}\)

\(\dfrac{x+1}{x^2-x}=\dfrac{\left(x+1\right)\left(x^2+x+1\right)}{x\left(x-1\right)\left(x^2+x+1\right)}\)

\(\dfrac{x-1}{x^2+x+1}=\dfrac{x\left(x-1\right)\left(x-1\right)}{x\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x\left(x-1\right)^2}{x\left(x-1\right)\left(x^2+x+1\right)}\)

6.

\(x^2-2ax+a^2=\left(x-a\right)^2\)

\(x^2-ax=x\left(x-a\right)\)

MTC: \(x\left(x-a\right)^2\)

\(\dfrac{x}{x^2-2ax+a^2}=\dfrac{x.x}{\left(x-a\right)^2x}=\dfrac{x^2}{x\left(x-a\right)^2}\)

\(\dfrac{x+a}{x^2-ax}=\dfrac{\left(x+a\right)\left(x-a\right)}{x\left(x-a\right)\left(x-a\right)}=\dfrac{x^2-a^2}{x\left(x-a\right)^2}\)