Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{x^2y+2xy^2+y^3}{2x^2+xy-y^2}\)
\(=\frac{x^2y+xy^2+xy^2+y^3}{2x^2+2xy-xy-y^2}\)
\(=\frac{xy\left(x+y\right)+y^2\left(x+y\right)}{2x\left(x+y\right)-y\left(x+y\right)}\)
\(=\frac{\left(x+y\right)\left(xy+y^2\right)}{\left(2x-y\right)\left(x+y\right)}=\frac{xy+y^2}{2x-y}\left(đpcm\right)\)
Ta có: \(\frac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}\)
\(=\frac{x^2+xy+2xy+2y^2}{x^2\left(x+2y\right)-y^2\left(x+2y\right)}\)
\(=\frac{x\left(x+y\right)+2y\left(x+y\right)}{\left(x^2-y^2\right)\left(x+2y\right)}\)
\(=\frac{\left(x+2y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)\left(x+2y\right)}=\frac{1}{x-y}\left(đpcm\right)\)
\(MTC:315x^2y^3z^2\)
\(\frac{2x}{9y^2z}=\frac{2x\times35x^2yz}{9y^2z\times35x^2yz}=\frac{70x^3yz}{315x^2y^3z^2}\)
\(\frac{y}{15xz^2}=\frac{y\times21xy^3}{15xz^2\times21xy^3}=\frac{21xy^4}{315x^2y^3z^2}\)
\(\frac{13z}{63x^2y^3}=\frac{13z\times5z^2}{63x^2y^3\times5z^2}=\frac{65z^3}{315x^2y^3z^2}\)
cùng nhau ta qui đồng,
MSC là 9-x2 = (3-x)(3+x) nên
-3(3+x)/MSC ; 2y/MSC ; y(3-y)/MSC