Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tìm MTC: x3 – 1 = (x – 1)(x2 + x + 1)
Nên MTC = (x – 1)(x2 + x + 1)
Nhân tử phụ:
(x3 – 1) : (x3 – 1) = 1
(x – 1)(x2 + x + 1) : (x2 + x + 1) = x – 1
(x – 1)(x2+ x + 1) : 1 = (x – 1)(x2 + x + 1)
Qui đồng:
b) Tìm MTC: x + 2
2x – 4 = 2(x – 2)
6 – 3x = 3(2 – x)
MTC = 6(x – 2)(x + 2)
Nhân tử phụ:
6(x – 2)(x + 2) : (x + 2) = 6(x – 2)
6(x – 2)(x + 2) : 2(x – 2) = 3(x + 2)
6(x – 2)(x + 2) : -3(x – 2) = -2(x + 2)
Qui đồng:
click mh nhaa)
\(\dfrac{3x-6}{x^2-6x+5}=\dfrac{3x-6}{x^2-x-5x+5}=\dfrac{3x-6}{x\left(x-1\right)-5\left(x-1\right)}=\dfrac{3x-6}{\left(x-1\right)\left(x-5\right)}\)
\(\dfrac{5x-5}{2x^2-2}=\dfrac{5x-5}{2\left(x^2-1\right)}=\dfrac{5x-5}{2\left(x-1\right)\left(x+1\right)}\)
MTC: \(2\left(x-1\right)\left(x+1\right)\left(x-5\right)\)
\(\dfrac{3x-6}{x^2-6x+5}=\dfrac{3x-6}{x^2-x-5x+5}=\dfrac{3x-6}{x\left(x-1\right)-5\left(x-1\right)}\\ =\dfrac{3x-6}{\left(x-1\right)\left(x-5\right)}=\dfrac{2\left(x+1\right)\left(3x-6\right)}{2\left(x-1\right)\left(x+1\right)\left(x-5\right)}\)
\(\dfrac{5x-5}{2x^2-2}=\dfrac{5x-5}{2\left(x^2-1\right)}=\dfrac{5x-5}{2\left(x-1\right)\left(x+1\right)}\\ =\dfrac{\left(x-5\right)\left(5x-5\right)}{2\left(x-1\right)\left(x+1\right)\left(x-5\right)}\)
a) \(\dfrac{3x}{2x+4}\) và \(\dfrac{x+3}{x^2-4}\)
Phân tích các mẫu thức thành nhân tử :
\(2x+4 = 2(x+2)\)
\(x^2 - 4 = (x-2)(x+2)\)
MTC : \(2(x+2)(x-2)\)
Nhân tử phụ của mẫu thức : \(2x + 4\) là \((x - 2)\)
\(x^2 - 4\) là \(2\)
QĐ: \(\dfrac{3x}{2x+4}=\dfrac{3x}{2\left(x+2\right)}=\dfrac{3x\left(x-2\right)}{2\left(x+2\right)\left(x-2\right)}\)
\(\dfrac{x+3}{x^2-4}=\dfrac{x+3}{\left(x+2\right)\left(x-2\right)}=\dfrac{2\left(x+3\right)}{2\left(x+2\right)\left(x-2\right)}\)
b) \(\dfrac{x+5}{x^2+4x+4}\) và \(\dfrac{x}{3x+6}\)
Phân tích các mẫu thức thành nhân tử :
\(x^2+4x+4 = (x+2)^2\)
\(3x + 6\) \(= 3(x+2)\)
MTC : \(3(x+2)^2\)
Nhân tử phụ của mẫu thức : \(x^2 + 4x +4 \) là \(3\)
\(3x + 6\) là \((x+2)\)
QĐ : \(\dfrac{x+5}{x^2+4x+4}=\dfrac{\left(x+5\right)}{\left(x+2\right)^2}=\dfrac{3\left(x+5\right)}{3\left(x+2\right)^2}\)
\(\dfrac{x}{3x+6}=\dfrac{x}{3\left(x+2\right)}=\dfrac{x\left(x+2\right)}{3\left(x+2\right)^2}\)
a: \(\dfrac{5}{2x+6}=\dfrac{5\left(x-3\right)}{2\left(x+3\right)\left(x-3\right)}\)
3/x^2-9=6/2(x+3)(x-3)
b: \(\dfrac{2x}{x^2-8x+16}=\dfrac{2x}{\left(x-4\right)^2}=\dfrac{6x^2}{3x\left(x-4\right)^2}\)
\(\dfrac{x}{3x^2-12x}=\dfrac{x}{3x\left(x-4\right)}=\dfrac{x\left(x-4\right)}{3x\left(x-4\right)^2}\)
c: \(\dfrac{x+y}{x}=\dfrac{\left(x+y\right)\cdot\left(x-y\right)}{x\left(x-y\right)}\)
x/x-y=x^2/x(x-y)
e: \(\dfrac{1}{x+2}=\dfrac{2x-x^2}{x\left(x+2\right)\left(2-x\right)}\)
\(\dfrac{8}{2x-x^2}=\dfrac{8\left(x+2\right)}{x\left(2-x\right)\left(2+x\right)}\)
1)
\(\dfrac{4x^2-3x+5}{x^3-1}=\dfrac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}\)
MTC: \(\left(x-1\right)\left(x^2+x+1\right)\)
\(\dfrac{4x^2-3x+5}{x^3-1}=\dfrac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\dfrac{1-2x}{x^2+x+1}=\dfrac{\left(x-1\right)\left(1-2x\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x-2x^2-1+2x}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{3x-2x^2-1}{\left(x-1\right)\left(x^2+x+1\right)}=\)
\(-2=\dfrac{-2\left(x-1\right)\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{-2\left(x^3-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{-2x^3+2}{\left(x-1\right)\left(x^2+x+1\right)}\)