\(\frac{2-a}{2a}\); \(\frac{1}{2}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2017

1)\(\frac{1}{2\text{a}}=\frac{1.\text{x^2}}{2\text{a.x}^2}=\frac{x^2}{2\text{ax}^2};\frac{2}{x}=\frac{2.2\text{a}x}{x.2\text{ax}}=\frac{4\text{ax}}{2\text{ax}^2}\)\(;\frac{x^2-2\text{ã}}{2\text{ax}^2}\)giữ nguyên

2) \(\frac{x}{a-2}=\frac{x.3\text{a}}{3\text{a}\left(a-2\right)}=\frac{3\text{ax}}{3\text{a}^2-6\text{a}};\frac{2}{3\text{a}}=\frac{2.\left(a-2\right)}{3\text{a}\left(a-2\right)}=\frac{2\text{a}-4}{3\text{a}^2-6\text{a}};\frac{5\text{a}-4}{3\text{a}^2-6\text{a}}\)giữ nguyên

25 tháng 6 2017

3) \(\frac{x}{10\text{x}-10}=\frac{x.3\text{x}}{\left(10\text{x}-10\right).3\text{x}}=\frac{3\text{x}^2}{30\text{x}^2-30};\frac{1}{3\text{x}-3}=\frac{1.10\text{x}}{10\text{x}.\left(3\text{x}-3\right)}=\)\(\frac{10\text{x}}{30\text{x}^2-30\text{x}};\frac{9\text{x}-10}{30\text{x}^2-30\text{x}}\)giữ

4) \(\frac{1}{1-a}==\frac{-1}{a-1}=\frac{-1.\left(a^2+a+1\right)}{\left(a-1\right)\left(a^2+a+1\right)}=\frac{-a^2-a-1}{a^3-1};\frac{1}{a^2+a+1}=\frac{1.\left(a-1\right)}{\left(a-1\right)\left(a^2+a+1\right)}\)

\(=\frac{a-1}{a^3-1};\frac{a^3+2}{a^3-1}\)giữ nguyên

2 tháng 7 2017

Giúp Mk nha. Cám ơn mọi người trước

1 tháng 7 2017

a ) MTC : \(2x\left(x+3\right)\left(x-3\right)\)

\(\frac{7x-1}{2x^2+6x}=\frac{7x-1}{2x\left(x+3\right)}=\frac{\left(7x-1\right)\left(x-3\right)}{2x\left(x+3\right)\left(x-3\right)}\)

\(\frac{3-2x}{x^2-9}=\frac{3-2x}{\left(x-3\right)\left(x+3\right)}=\frac{2x\left(3-2x\right)}{2x\left(x+3\right)\left(x-3\right)}\)

b ) MTC : \(2\left(-x\right)\left(x-1\right)^2\)

\(\frac{2x-1}{x-x^2}=\frac{2x-1}{-x\left(x-1\right)}=\frac{2\left(2x-1\right)\left(x-1\right)}{2\left(-x\right)\left(x-1\right)^2}\)

\(\frac{x+1}{2-4x+2x^2}=\frac{x+1}{2\left(x^2-2x+1\right)}=\frac{-x\left(x+1\right)}{2\left(-x\right)\left(x-1\right)^2}\)

2 tháng 12 2019

a) MTC: 2xy

Quy đồng: \(\frac{2x-3y}{2xy}\) giữ nguyên

               \(\frac{x+2y}{x}=\frac{2y\left(x+2y\right)}{2xy}=\frac{2xy+y^2}{2xy}\)

b) \(\frac{2}{x^2-4x}=\frac{2}{x\left(x-4\right)};\frac{x}{x^2-16}=\frac{x}{\left(x-4\right)\left(x+4\right)}\)

MTC: x (x-4)(x+4)

Quy đồng : \(\frac{2}{x\left(x-4\right)}=\frac{2\left(x+4\right)}{x\left(x-4\right)\left(x+4\right)}=\frac{2x+8}{x\left(x-4\right)\left(x+4\right)}\)

               \(\frac{x}{\left(x+4\right)\left(x-4\right)}=\frac{x^2}{x\left(x-4\right)\left(x+4\right)}\)

Học tốt nhé ^3^

18 tháng 11 2018

Tìm MTC: \(x^3-1=\left(x-1\right)\left(x^2+x+1\right)\)

Nên \(MTC=\left(x-1\right)\left(x^2+x+1\right)\)

Nhân tử phụ: 

\(\left(x^3-1\right)\div\left(x^3-1\right)=1\)

\(\left(x-1\right)\left(x^2+x+1\right)\div\left(x^2+x+1\right)=x-1\)

\(\left(x-1\right)\left(x^2+x+1\right)\div1=\left(x-1\right)\left(x^2+x+1\right)\)

Quy đồng:

\(\frac{4x^2-3x+5}{x^3-1}=\frac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(\frac{1-2x}{x^2+x+1}=\frac{\left(x-1\right)\left(1-2x\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(-2=\frac{-2\left(x^3-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

30 tháng 10 2020

a) \(\frac{3x+6}{x^2-4}=\frac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{3}{x-2}\)( ĐKXĐ : x ≠ ±2 )

\(\frac{2x+6}{x^3+3x^2-9x-27}=\frac{2\left(x+3\right)}{x^2\left(x+3\right)-9\left(x+3\right)}=\frac{2\left(x+3\right)}{\left(x+3\right)\left(x^2-9\right)}=\frac{2}{\left(x-3\right)\left(x+3\right)}\)( ĐKXĐ : x ≠ ±3 )

MTC : ( x - 2 )( x - 3 )( x + 3 )

=> \(\hept{\begin{cases}\frac{3}{x-2}=\frac{3\left(x-3\right)\left(x+3\right)}{\left(x-2\right)\left(x-3\right)\left(x+3\right)}=\frac{3\left(x^2-9\right)}{\left(x-2\right)\left(x-3\right)\left(x+3\right)}=\frac{3x-27}{\left(x-2\right)\left(x-3\right)\left(x+3\right)}\\\frac{2}{\left(x-3\right)\left(x+3\right)}=\frac{2\left(x-2\right)}{\left(x-2\right)\left(x-3\right)\left(x+3\right)}=\frac{4x-4}{\left(x-2\right)\left(x-3\right)\left(x+3\right)}\end{cases}}\)

b) \(\frac{x^2-4x+4}{2x^2-3x+1}=\frac{\left(x-2\right)^2}{2x^2-2x-x+1}=\frac{\left(x-2\right)^2}{2x\left(x-1\right)-\left(x-1\right)}=\frac{\left(x-2\right)^2}{\left(x-1\right)\left(2x-1\right)}\)( ĐKXĐ : \(\hept{\begin{cases}x\ne1\\x\ne\frac{1}{2}\end{cases}}\))

\(\frac{x+4}{2x-2}=\frac{x+4}{2\left(x-1\right)}\)( ĐKXĐ : x ≠ 1 )

MTC : \(2\left(x-1\right)\left(2x-1\right)\)

=> \(\hept{\begin{cases}\frac{\left(x-2\right)^2}{\left(x-1\right)\left(2x-1\right)}=\frac{2\left(x^2-4x+4\right)}{2\left(x-1\right)\left(2x-1\right)}=\frac{2x^2-8x+8}{2\left(x-1\right)\left(2x-1\right)}\\\frac{x+4}{2\left(x-1\right)}=\frac{\left(x+4\right)\left(2x-1\right)}{2\left(x-1\right)\left(2x-1\right)}=\frac{2x^2+7x-4}{2\left(x-1\right)\left(2x-1\right)}\end{cases}}\)

c) \(\frac{6a}{a-b}\)( ĐKXĐ : a ≠ b ) ; \(\frac{2b}{b-a}=\frac{-2b}{a-b}\)( ĐKXĐ : a ≠ b) ; \(\frac{5}{a^2-b^2}=\frac{5}{\left(a-b\right)\left(a+b\right)}\)( ĐKXĐ : a ≠ ±b )

MTC : \(\left(a-b\right)\left(a+b\right)\)

=> \(\frac{6a}{a-b}=\frac{6a\left(a+b\right)}{\left(a-b\right)\left(a+b\right)}=\frac{6a^2+6ab}{\left(a-b\right)\left(a+b\right)}\)

\(\frac{-2b}{a-b}=\frac{-2b\left(a+b\right)}{\left(a-b\right)\left(a+b\right)}=\frac{-2ab-2b^2}{\left(a-b\right)\left(a+b\right)}\)

\(\frac{5}{a^2-b^2}=\frac{5}{\left(a-b\right)\left(a+b\right)}\)

d) \(\frac{x}{x^2+11x+30}=\frac{x}{x^2+5x+6x+30}=\frac{x}{x\left(x+5\right)+6\left(x+5\right)}=\frac{x}{\left(x+5\right)\left(x+6\right)}\)( ĐKXĐ : x ≠ -5 ; x ≠ -6 )

\(\frac{5}{x^2+9x+20}=\frac{5}{x^2+4x+5x+20}=\frac{5}{x\left(x+4\right)+5\left(x+4\right)}=\frac{5}{\left(x+4\right)\left(x+5\right)}\)( ĐKXĐ : x ≠ -4 ; x ≠ -5 )

MTC : \(\left(x+4\right)\left(x+5\right)\left(x+6\right)\)

=> \(\hept{\begin{cases}\frac{x}{\left(x+5\right)\left(x+6\right)}=\frac{x\left(x+4\right)}{\left(x+4\right)\left(x+5\right)\left(x+6\right)}=\frac{x^2+4x}{\left(x+4\right)\left(x+5\right)\left(x+6\right)}\\\frac{5}{\left(x+4\right)\left(x+5\right)}=\frac{5\left(x+6\right)}{\left(x+4\right)\left(x+5\right)\left(x+6\right)}=\frac{5x+30}{\left(x+4\right)\left(x+5\right)\left(x+6\right)}\end{cases}}\)

Sai chỗ nào bạn bỏ qua nhé