\(\frac{13}{15}\)

b,\(\fra...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2019

a/ \(\frac{5}{6n}\)và \(\frac{7}{15}\)

=> MSC = \(6n\cdot15=90n\)

\(\Rightarrow\frac{5}{6n}=\frac{5\cdot15}{90n}=\frac{75}{90n}\)

\(\Rightarrow\frac{7}{15}=\frac{7\cdot6n}{90n}=\frac{42n}{90n}\)

b/  \(\frac{9x}{24}\)và \(\frac{12}{36}\)

=> MSC = 72

\(\Rightarrow\frac{9x}{24}=\frac{9x\cdot3}{72}=\frac{27x}{72}\)

\(\Rightarrow\frac{12}{36}=\frac{12\cdot2}{72}=\frac{24}{72}\)

18 tháng 5 2019

a)MSC = 6n . 15 = 90n

5/6n = 5 . 15/60n . 15 = 75/90n

7/15 = 7 . 6n/15 . 6n =42n/90n

            #Louis

4 tháng 3 2017

Đây có phải bài lớp 6 không vậy?

7 tháng 9 2019

Câu hỏi của Lê Tiến Cường - Toán lớp 6 - Học toán với OnlineMath

\(A=\frac{3}{2}+\frac{7}{6}+\frac{13}{12}+...+\frac{10101}{10100}=\frac{2+1}{2}+\frac{6+1}{6}+\frac{12+1}{12}+...+\frac{10100+1}{10100}\)

\(A=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{6}\right)+\left(1+\frac{1}{12}\right)+....+\left(1+\frac{1}{10100}\right)\)

\(A=\left(1+\frac{1}{1\times2}\right)+\left(1+\frac{1}{2\times3}\right)+\left(1+\frac{1}{3\times4}\right)+...+\left(1+\frac{1}{100\times101}\right)\)

\(A=\left(1+1+1+....+1\right)+\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{100\times101}\right)\)

\(A=100+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{100}-\frac{1}{101}\right)\)

\(A=100+1-\frac{1}{101}=101-\frac{1}{101}< 101=B\)

\(\Rightarrow A< B\)

So easy

7 tháng 3 2017

A = 18:26+(-5):27+(-22):86+12:39+(-32):43 = 9:13+(-5):27+(-11):43+4:13+(-32):43 = (9:13+4:13)+[(-11):43+(-32):43]+(-5):27 = 1+(-1)+5:27 = -5:27

B =(-10):12+8:15+(-19):56+3:(-18)+28:60 = (-5):6+8:15+(-19):56+1:(-6)+7:15 = [(-5):6+1:(-6)]+(8:15+7:15)+(-19):56 = (-1)+1+(-19):56 = (-19) :56

19 tháng 6 2018

2132/567

5 tháng 3 2019

a>

b<

c>

d<