K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Tập giá trị của hàm số \(y = \cos x\)là \(\left[ { - 1;1} \right]\)

b) Trục tung là trục đối xứng của hàm số \(y = \cos x\).

Như vậy hàm số \(y = \cos x\)là hàm số chẵn.

c) Bằng cách dịch chuyển đồ thị \(y = \cos x\) trên đoạn \(\left[ { - \pi ;\pi } \right]\) song song với trục hoành sang phải theo đoạn có độ dài \(2\pi \), ta nhận được đồ thị có hàm số \(y = \cos x\) trên đoạn \(\left[ {\pi ;3\pi } \right]\)

Như vậy hàm số \(y = \cos x\) là hàm số tuần hoàn

d)  Hàm số \(y = \cos x\)đồng biến trên mỗi khoảng \(\left( { - \pi  + k2\pi ;k2\pi } \right)\), nghịch biến trên mỗi khoảng \(\left( {k2\pi ;\pi  + k2\pi } \right)\) với \(k \in Z\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)

x

\( - \pi \)

\( - \frac{{2\pi }}{3}\)

\[ - \frac{\pi }{2}\]

\( - \frac{\pi }{3}\)

0

\(\frac{\pi }{3}\)

\(\frac{\pi }{2}\)

\(\frac{{2\pi }}{3}\)

\(\pi \)

\(y = \cos x\)

-1

\( - \frac{1}{2}\)

0

\(\frac{1}{2}\)

1

\(\frac{1}{2}\)

0

\( - \frac{1}{2}\)

-1

 

b) Trong mặt phẳng tọa độ Oxy, hãy biểu diễn các điểm (x; y) trong bảng giá trị ở câu a. Bằng cách làm tương tự, lấy nhiều điểm \(\left( {x;\cos x} \right)\) với \(x \in \left[ { - \pi ;\pi } \right]\) và nối lại ta được đồ thị hàm số \(y = \cos x\) trên đoạn \(x \in \left[ { - \pi ;\pi } \right]\) (Hình 27)

 

c) Làm tương tự như trên đối với các đoạn \(\left[ { - 3\pi ; - \pi } \right]\), \(\left[ {\pi ;3\pi } \right]\),...ta có đồ thị hàm số \(y = \cos x\)trên R được biểu diễn ở Hình 28.

 

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Do \(\left( { - 2\pi ; - \pi } \right) = \left( { - 2\pi ;\pi  - 2\pi } \right)\) nên hàm số \(y = \cos x\) nghịch biến trên khoảng \(\left( { - 2\pi ; - \pi } \right)\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Phương trình hoàn độ giao điểm của hai đồ thì hàm số là \(\sin x = \cos x\)

\( \Leftrightarrow \tan x = 1 \Leftrightarrow x = \frac{\pi }{4} + k\pi \;\left( {k \in \mathbb{Z}} \right)\)

Do \(x \in \left[ { - 2\pi ;\frac{{5\pi }}{2}} \right]\; \Leftrightarrow  - 2\pi  \le \frac{\pi }{4} + k\pi  \le \frac{{5\pi }}{2}\;\; \Leftrightarrow \; - \frac{9}{4} \le k \le \frac{9}{4}\;\;\;\)

Mà \(k\; \in \mathbb{Z}\;\; \Leftrightarrow k\; \in \left\{ { - 2;\; - 1;0;1;2} \right\}\)

Vậy ta chọn đáp án A