Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chỉ có đường thẳng song song với a mới không cắt a. Vì 2015 đường thẳng này phân biệt ta áp dụng tiên đề Ơ-clit như sau:
- Qua một điểm M nằm ngoài đường thẳng a chỉ có 1 và chỉ một đường thẳng song song với a và đi qua M.
Vậy có ít nhất 2015 - 1 = 2014 đường thẳng đi qua a vì chỉ có 1 đường thẳng song song thõa mãn
Chỉ có đường thẳng song song với a mới không cắt a. Vì 2015 đường thẳng này phân biệt ta áp dụng tiên đề Ơ-clit như sau:
- Qua một điểm M nằm ngoài đường thẳng a chỉ có 1 và chỉ một đường thẳng song song với a và đi qua M.
Vậy có ít nhất 2015 - 1 = 2014 đường thẳng đi qua a vì chỉ có 1 đường thẳng song song thõa mãn, còn lại 2014 đường thẳng không song song đường thẳng a buộc phải cắt a
Theo tiên đề Ơ-clit về 2 đường thẳng song song , ta có :
Có một và chỉ mọt đường thằng vừa đi qua điểm M và song song với đường thẳng a cho trước ( tức không cắt đường thẳng a )
MÀ các đường thẳng đi qua đường thẳng a là các đường thẳng phân biệt
Từ đó ta suy ra có ít nhất 2020 đường thẳng cắt đường thẳng a
x y A B C M D E
Giải :a) Ta có BD // Ay (gt)
=> góc DBM = góc A (so le trong)
mà góc A = 900 => góc BDM = 900
Xét tam giác AMC và tam giác BMD
có góc A = góc DBM = 900 (cmt)
MA = MB(gt)
góc AMC = góc BMD ( đối đỉnh)
=> tam giác AMC = tam giác BMD (g.c.g)
b) Ta có : tam giác AMC = tam giác BMD (cm câu a)
=> MC = MD ( hai cạnh tương ứng)
Xét tam giác MEC và tam giác MED
có MC = MD (cmt)
CME = DME (gt)
ME : chung
=> tam giác MEC = tam giác MED (c.g.c)
=> góc CEM = góc DEM (hai góc tương ứng)
Mà tia EM nằm giữa ED và EC
=> EM là tia p/giác của góc DEC (Đpcm)
c) Ta có : tam giác AMC = tam giác BMD (cm câu a)
=> BD = AC ( hai cạnh tương ứng)
Mà DE = BD + BE
hay AC + BE = DE
=> BE = DE - AC (1)
Ta lại có tam giác MEC = tam giác MED (cm câu b)
=> EC = ED (hai cạnh tương ứng) (2)
Từ (1) và (2) suy ra BE = CE - AC (Đpcm)