K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2019

Giải bài 41 trang 83 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 41 trang 83 SGK Toán 9 Tập 2 | Giải toán lớp 9

Kiến thức áp dụng

+ Số đo của góc có đỉnh nằm bên trong đường tròn bằng nửa tổng số đo hai cung bị chắn.

+ Số đo của góc có đỉnh nằm bên ngoài đường tròn bằng nửa hiệu số đo hai cung bị chắn.

19 tháng 5 2019

⇒ A ^ + B S M ^

= 1 2 . s đ   N C ⏜ - s đ   B M ⏜ + 1 2 s đ   N C ⏜ + s đ   M B ⏜ = s đ   N C   ⏜ 1

(đpcm)

14 tháng 8 2019

A B C D THEO ĐÚNG ĐỀ

1. \(\left(2018-2019\right)\) Cho đường tròn tâm \(\left(2016-2017\right)\) Cho tam giác đều ABC nội tiếp đường tròn tâm O. Điểm E thay đổi trên cung nhỏ AB (E khác A và B). Từ B và C lần lượt kẻ các tiếp tuyến với đường tròn (O), các tiếp tuyến này cắt đường thẳng AE theo thứ tự tại M và N. Gọi F là giao điểm của BN và CM a) Chứng minh rằng \(MB.CN=BC^2\) b) Khi điểm E thay đổi trên cung nhỏ AB....
Đọc tiếp

1. \(\left(2018-2019\right)\) Cho đường tròn tâm \(\left(2016-2017\right)\) Cho tam giác đều ABC nội tiếp đường tròn tâm O. Điểm E thay đổi trên cung nhỏ AB (E khác A và B). Từ B và C lần lượt kẻ các tiếp tuyến với đường tròn (O), các tiếp tuyến này cắt đường thẳng AE theo thứ tự tại M và N. Gọi F là giao điểm của BN và CM

a) Chứng minh rằng \(MB.CN=BC^2\)

b) Khi điểm E thay đổi trên cung nhỏ AB. Chứng minh rằng đường thẳng EF luôn đi qua một điểm cố định

3. \(\left(2015-2016\right)\) Cho tam giác nhọn \(\left(2014-2015\right)\) Cho tam giác ABC vuông ở A có đường cao AH, trên cạnh BC lấy điểm E, F sao cho CE = CA, BF = BA. Gọi I, I1, I2 lần lượt là tâm đường tròn nội tiếp các tam giác ABC, ABH, ACH và M là giao điểm của BI và AC. Chứng minh rằng

a) Ba điểm A, I1, E thẳng hàng và IE = IF

b) Đường thẳng FM là tiếp tuyến của đường tròn ngoại tiếp tam giác II1I2

5. \(\left(2013-2014\right)\) Cho tam giác \(AB=AC=a\), \(\widehat{BAC}=120^o\). Ký hiệu

0