Tam giác đồng dạng có hai tính chất quan trọng sau đây:
Ba cặp cạnh tỉ lệ với nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Có
- Các trường hợp là :
đồng dạng (c.c.c) , đồng dạng (g.g) , đông dạng (c.g.c)
đồng dạng (c.c.c) , đồng dạng (g.g) , đồng dạng (c.g.c)
Vì tam giác ABC đồng dạng với tam giác A’B’C’ theo tỉ số k nên A B A ' B ' = A C A ' C ' = B C B ' C ' = k
Ta có:
A B A ' B ' = A C A ' C ' = B C B ' C ' = A B + A C + B C A ' B ' + A ' C ' + B ' C ' = P A B C P A ' B ' C ' = k
Vậy tỉ số chu vi của hai tam giác là k.
Đáp án: C
- Trường hợp 1 (c.c.c):
Định lí: Nếu ba cạnh của tam giác này tỉ lệ với ba cạnh của tam giác kia thì hai tam giác đó đồng dạng.
- Trường hợp 2 (c.g.c):
Định lí: Nếu hai cạnh của tam giác này tỉ lệ với hai cạnh của tam giác kia và hai góc tạo bởi các cặp cạnh đó bằng nhau, thì hai tam giác đó đồng dạng.
- Trường hợp 3 (g.g):
Định lí: Nếu hai góc của tam giác này lần lượt bằng hai góc của tam giác kia thì hai tam giác đó đồng dạng.
- Trường hợp 1 (c.c.c):
Định lí: Nếu ba cạnh của tam giác này tỉ lệ với ba cạnh của tam giác kia thì hai tam giác đó đồng dạng.
- Trường hợp 2 (c.g.c):
Định lí: Nếu hai cạnh của tam giác này tỉ lệ với hai cạnh của tam giác kia và hai góc tạo bởi các cặp cạnh đó bằng nhau, thì hai tam giác đó đồng dạng.
- Trường hợp 3 (g.g):
Định lí: Nếu hai góc của tam giác này lần lượt bằng hai góc của tam giác kia thì hai tam giác đó đồng dạng.
Vì tam giác ABC đồng dạng với tam giác A’B’C’ theo tỉ số k nên A B A ' B ' = A C A ' C ' = B C B ' C ' = k
Suy ra A ' B ' A B = A ' C ' A C = B ' C ' B C = 1 k
Áp dụng tính chất dãy tỉ số bằng nhau ta có
A ' B ' A B = A ' C ' A C = B ' C ' B C = A ' B ' + A ' C ' + B ' C ' A B + A C + B C = 1 k
Vậy tỉ số chu vi của tam giác A’B’C’ và ABC là 1 k
Đáp án: B
*So sánh :
Trường hợp | Giống nhau | Khác | nhau |
1 | 3 cạnh | 3 cạnh tương ứng bằng nhau | 3 cạnh tương ứng tỉ lệ |
2 | 2 cạnh 1 góc | 2 cạnh tương ứng và một góc kề với hai cạnh bằng nhau | 2 cạnh tương ứng tỉ lệ |
3 | 2 góc bằng nhau | 1 cạnh và 2 góc kề tương ứng bằng nhau | Chỉ 2 góc bằng nhau , không cần có điều kiện cạnh |
Trả lời:
So sánh:
Trường hợp | Giống nhau | Khác nhau | |
---|---|---|---|
Bằng nhau | Đồng dạng | ||
1 | 3 cạnh | 3 cạnh tương ứng bằng nhau | 3 cạnh tương ứng tỉ lệ |
2 | 2 cạnh 1 góc | 2 cạnh tương ứng và một góc kề với hai cạnh bằng nhau | 2 cạnh tương ứng tỉ lệ |
3 | 2 góc bằng nhau | 1 cạnh và 2 góc kề tương ứng bằng nhau | Chỉ 2 góc bằng nhau, không cần có điều kiện cạnh |
- Ở hai tam giác bằng nhau yêu cầu các cạnh tương ứng bằng nhau còn ở hai tam giác đồng dạng yêu cầu các cạnh tương ứng có cùng tỉ lê.
- Hai tam giác bằng nhau có ba trường hợp: cạnh góc cạnh, cạnh cạnh cạnh, góc cạnh góc.
- Hai tam giác đồng dạng có ba trường hợp: cạnh góc cạnh, cạnh cạnh cạnh, góc góc.