Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) góc AOC =1/2 góc COB
mà CIB = 1/2 góc COB ( góc nội tiếp )
=> góc AOC=góc BIC
![](https://rs.olm.vn/images/avt/0.png?1311)
a.Ta có DE là đường kính của (O)
\(\Rightarrow EF\perp DF\)
Mà \(DE\perp BC=K\Rightarrow\widehat{EKI}=\widehat{EFD}=90^0\)
=> DFIK nội tiếp
b ) Ta có :
\(AK\perp DE,EF\perp DF\)
\(\Rightarrow\widehat{AFE}=\widehat{AKE}=90^0\)
\(\Rightarrow AFKE\) nội tiếp
Mà IK = HK , \(DE\perp BC=K\) => DE là trung trực của HI
\(\Rightarrow\widehat{DHA}=\widehat{DHK}=\widehat{DIK}=\widehat{DFK}=\widehat{DEA}\)
c ) Ta có : \(\widehat{EIK}=\widehat{DAK}\)do AFKE nội tiếp
\(\widehat{AKD}=\widehat{EKI}=90^0\)
\(\Rightarrow\Delta AKD~\Delta EKI\left(g.g\right)\)
\(\Rightarrow\frac{AK}{EK}=\frac{KD}{KI}\)
\(\Rightarrow KE.KD=KI.AK\)
Lại có : \(\widehat{AFI}=\widehat{AKD}=90^0\Rightarrow\Delta AFI~\Delta AKD\left(g.g\right)\)
\(\Rightarrow\frac{AF}{AK}=\frac{AI}{AD}\Rightarrow AE.AD=AI.AK\)
Mà BCDF nội tiếp
\(\Rightarrow\widehat{AFB}=\widehat{ACD}\Rightarrow\Delta ABF~\Delta ADC\left(g.g\right)\)
\(\Rightarrow\frac{AF}{AC}=\frac{AB}{AD}\Rightarrow AF.AD=AB.AC\)
\(\Rightarrow AB.AC=AI.AK\)
=> KI.AB.AC = AI.AK.KI= AI.KE.KD
![](https://rs.olm.vn/images/avt/0.png?1311)
O N H E M D P
a) MN là tiếp tuyến đường tròn (O) \(\Rightarrow\widehat{MNP}=90^o\)
DO = ON = OP => \(DO=\frac{1}{2}NP\Rightarrow\widehat{NDP}=90^o\)
- Aps dụng hệ thức lượng cho tam giác MNP vuông tại N đường cao ND , ta có :
MN2 = MD . MP ( đpcm )
b) Ta có : PE // OM => PE // OH
Mà O là trung điểm của NP => OH là đường trung bình của tam giác ENP
=> H là trung điểm NE
Vậy : HN = HE ( đpcm )
c) Theo ( c/m câu b ) : HN = HE => \(HE\perp OM\)
Áp dung hệ thức trong tam giác NMO vuông tại N , đường cao NH :
Ta có : ON2 = OM . OH => OP2 = OM . OH
\(\Rightarrow\frac{OP}{OM}=\frac{OH}{OP}\left(1\right)\)
- Xét 2 tam giác: OHP và OPM
có : \(\frac{OP}{OM}=\frac{OH}{OP}\left(theo\left(1\right)\right)\)
\(\widehat{O}\)là góc chung
Do đó : \(\Delta OHP~\Delta OPM\left(c-g-c\right)\)
\(\Rightarrow\widehat{OPH}=\widehat{OMP}\left(đpcm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bo de \(AD.AE=AC^2\) (ban tu chung minh nha , cu tam giac dong dang la ra )
xet \(AD+AE=AD+DH+AD+HE=AH+AD+DH=2AH\)
=> \(\frac{1}{AD}+\frac{1}{AE}=\frac{AD+AE}{AD.AE}=\frac{2AH}{AC^2}\) (1)
ta phai cm \(\frac{2AH}{AC^2}=\frac{2}{AK}\Leftrightarrow AH.AK=AC^2\) (2)
do H la trung diem DE => \(OH\perp DE=>\widehat{ABO}=\widehat{AHO}=\widehat{ACO}=90^0\)
=> A,B,O,H,C thuoc duong tron duong kinh AO
=> \(\widehat{AHC}=\widehat{ABC}\left(\frac{1}{2}sd\widebat{AC}\right)\)
ma \(\widehat{ABC}=\widehat{ACK}\) tinh chat 2 tiep tuyen cat nhau
=> \(\widehat{ACK}=\widehat{AHC}\) lai co \(\widehat{CAK}=\widehat{HAC}\)
=> \(\Delta AKC\approx\Delta ACH\left(g-g\right)\)
=> \(\frac{AK}{AC}=\frac{AC}{AH}\Leftrightarrow AK.AH=AC^2\) (3)
Tu (1),(2),(3) ta co dpcm