Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left[\dfrac{\left(a-1\right)^2}{a^2+a+1}+\dfrac{2a^2-4a-1}{\left(a-1\right)\left(a^2+a+1\right)}+\dfrac{1}{a-1}\right]\cdot\dfrac{a\left(a^2+1\right)}{2a}\)
\(=\dfrac{a^3-3a^2+3a-1+2a^2-4a-1+a^2+a+1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\dfrac{a^2+1}{2}\)
\(=\dfrac{a^3-1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\dfrac{a^2+1}{2}=\dfrac{a^2+1}{2}\)
Sửa đề: \(\left[\dfrac{2a^3+a^2-a}{a^3-1}-2+\dfrac{1}{1-a}\right]\cdot\left(1:\dfrac{2a-1}{a-a^2}\right)\)
\(=\left(\dfrac{2a^3+a^2-a-2a^3+2-a^2-a-1}{\left(a-1\right)\left(a^2+a+1\right)}\right)\cdot\dfrac{a-a^2}{2a-1}\)
\(=\dfrac{-2a+1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\dfrac{-a\left(a-1\right)}{2a-1}=\dfrac{a}{a^2+a+1}\)
\(A=1+"\frac{2a+\sqrt{a}-1}{1-a}-\frac{2a\sqrt{a}-\sqrt{a}+a}{1-a\sqrt{a}}"\times\frac{a-\sqrt{a}}{2\sqrt{a}-1}=\)
\(A="\frac{1a+\sqrt{a}-1}{1-a}-\frac{1a\sqrt{a}-\sqrt{a}+a}{1-a\sqrt{a}}"\times\frac{a-\sqrt{a}}{1\sqrt{a}-1}\)
P/s: Ko chắc đâu nhé
ĐKXĐ:...
\(A=1+\left(\frac{1}{1-a}-\frac{\sqrt{a}}{1-a\sqrt{a}}\right).\left(2a+\sqrt{a}-1\right)\left(\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\right)\)
\(=1+\left(\frac{\sqrt{a}-1}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\left(1-\sqrt{a}\right)\left(a+\sqrt{a}+1\right)}\right)\left(2\sqrt{a}-1\right)\left(\sqrt{a}+1\right).\frac{\sqrt{a}}{2\sqrt{a}-1}\)
\(=1+\left(\frac{-1}{\sqrt{a}+1}+\frac{\sqrt{a}}{a+\sqrt{a}+1}\right).\sqrt{a}\left(\sqrt{a}+1\right)\)
\(=1+\left(-1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{a+\sqrt{a}+1}\right).\sqrt{a}\)
\(=1+\left(\frac{-a-\sqrt{a}-1+a+\sqrt{a}}{a+\sqrt{a}+1}\right).\sqrt{a}\)
\(=1-\frac{\sqrt{a}}{a+\sqrt{a}+1}=\frac{a+\sqrt{a}+1-\sqrt{a}}{a+\sqrt{a}+1}=\frac{a+1}{a+\sqrt{a}+1}\)