K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 10 2021

Lời giải:

$y-x^2y-2xy^2-y^3=y(1-x^2-2xy-y^2)$

$=y[1-(x^2+2xy+y^2)]=y[1-(x+y)^2]=y(1-x-y)(1+x+y)$

15 tháng 10 2021

= y-2xy\(^2\)-x\(^2\)y-y\(^3\)= y(1-2xy)-y(x\(^2\)+y\(^2\))= y(1-2xy-x\(^2\)-y\(^2\))= y(-x\(^2\)-2xy-y\(^2\)+1)

=-y(x\(^2\)+2xy+y\(^2\)-1)= -y[(x+y)\(^2\)-1] = -y(x+y-1)(x+y+1)

18 tháng 10 2021

a) \(2xy-y+6x-3=\left(2xy+6x\right)-\left(y+3\right)=2x\left(y+3\right)-\left(y+3\right)=\left(2x-1\right)\left(y+3\right)\)

b) \(x^2-2xy-x+2y=\left(x^2-2xy\right)-\left(x-2y\right)=x\left(x-2y\right)-\left(x-2y\right)=\left(x-1\right)\left(x-2y\right)\)

e) Ta có: \(x^3-4x-14x\left(x-2\right)=0\)

\(\Leftrightarrow x\left(x-2\right)\left(x+2\right)-14x\left(x-2\right)=0\)

\(\Leftrightarrow x\left(x-2\right)\left(x+2-14\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=12\end{matrix}\right.\)

5 tháng 8 2021

e)x3-4x+14x(x-2)=0

⇔ x(x2-4)+14x(x-2)=0

⇔ x(x-2)(x+2)+14x(x-2)=0

⇔ (x-2)(x2+2x+14x)=0

⇔ x(x-2)(x+16)=0

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x-2=0\\x+16=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=2\\x=-16\end{matrix}\right.\)

g)x2(x+1)-x(x+1)+x(x-1)=0

⇔ (x+1)(x2-x)+x(x-1)=0

⇔ x(x+1)(x-1)+x(x-1)=0

⇔ x(x-1)(x+2)=0

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x-1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=1\\x=-2\end{matrix}\right.\)

\(x\left(x-y\right)^2-y\left(x-y\right)^2+xy^2-x^2y\)

\(=\left(x-y\right)^2\left(x-y\right)-xy\left(x-y\right)\)

\(=\left(x-y\right)\left(x^2-2xy+y^2-xy\right)\)

\(=\left(x-y\right)\left(x^2-3xy+y^2\right)\)

5 tháng 8 2021

x(x-y)2 -y(x-y)2+xy2-x2y=x(x-y)2 -y(x-y)2+(xy2-x2y)=x(x-y)2 -y(x-y)2+xy(x-y)=\(\left(x-y\right)\left[x\left(x-y\right)-y\left(x-y\right)+xy\right]\)=\(\left(x-y\right)\left[\left(x-y\right)^2+xy\right]\)

5 tháng 8 2021

 2(x-y)2 -y(x-y)2 +xy2-x2y= 2(x-y)2-y(x-y)2+(xy^2-x^2y)=2(x-y)2-y(x-y)2+xy(x-y)=(x-y)\(\left[2\left(x-y\right)-y\left(x-y\right)+xy\right]\)=(x-y)(2x-2y-xy+y2+xy)=(x-y)(2x-2y+y2)

\(2\left(x-y\right)^2-y\left(x-y\right)^2+xy^2-x^2y\)

\(=\left(x-y\right)^2\left(2-y\right)+xy\left(y-x\right)\)

\(=\left(x-y\right)^2\cdot\left(2-y\right)-xy\left(x-y\right)\)

\(=\left(x-y\right)\left[\left(x-y\right)\left(2-y\right)-xy\right]\)

29 tháng 12 2021

\(=y\left(1-x^2-2xy-y^2\right)=y\left[1-\left(x+y\right)^2\right]=y\left(1-x-y\right)\left(1+y+x\right)\)

4 tháng 1 2022

\(x^2y-2xy^2+y^3=y\left(x^2-2xy+y^2\right)=y\left(x-y\right)^2\)

\(=y\left(x^2-2xy+y^2\right)=y\left(x-y\right)^2\)

18 tháng 7 2016

x^2 + 2y^2 - 2y - 2xy + 1  = (x^2 - 2xy + y^2) + (y^2 - 2y + 1) = (x - y)^2 + (y - 1)^2

18 tháng 7 2016

\(x^2+2y^2-2y-2xy+1\)

\(=x^2-2xy+y^2+y^2-2y+1\)

\(=\left(x-y\right)^2+\left(y-1\right)^2\)

\(=\left(x-y\right)^2-\left(1-y\right)^2\)

\(=\left(x-y-1+y\right)\left(x-y+1-y\right)\)

\(=\left(x-1\right)\left(x-2y+1\right)\)