Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
10.
\(\left(2x-3yi\right)+\left(1-3i\right)=x+6i\)
\(\Leftrightarrow\left(2x+1\right)+\left(-3y-3\right)i=x+6i\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+1=x\\-3y-3=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)
6.
\(\left(x+1\right)^2+\left(y-2\right)^2\le25\)
\(\Rightarrow\left|\left(x+1\right)-\left(y-2\right)i\right|\le5\)
\(\Rightarrow z\) là số phức: \(\left\{{}\begin{matrix}z=\left(x+1\right)-\left(y-2\right)i\\\left|z\right|\le5\end{matrix}\right.\)
Lưu ý: hình tròn khác đường tròn. Phương trình đường tròn là \(\left(x-a\right)^2+\left(y-b\right)^2=R^2\)
Pt hình tròn là: \(\left(x-a\right)^2+\left(y-b\right)^2\le R^2\)
3.
\(z=x+yi\Rightarrow\left|x-2+\left(y-4\right)i\right|=\left|x+\left(y-2\right)i\right|\)
\(\Leftrightarrow\left(x-2\right)^2+\left(y-4\right)^2=x^2+\left(y-2\right)^2\)
\(\Leftrightarrow-4x-8y+20=-4y+4\)
\(\Leftrightarrow x=-y+4\)
\(\left|z\right|=\sqrt{x^2+y^2}=\sqrt{\left(-y+4\right)^2+y^2}=\sqrt{2y^2-8y+16}\)
\(\left|z\right|=\sqrt{2\left(x-2\right)^2+8}\ge\sqrt{8}=2\sqrt{2}\)
17.
\(z^2+4z+4=-1\Leftrightarrow\left(z+2\right)^2=i^2\Rightarrow\left\{{}\begin{matrix}z_1=-2+i\\z_2=-2-i\end{matrix}\right.\)
\(\Rightarrow w=\left(-1+i\right)^{100}+\left(-1-i\right)^{100}=\left(1-i\right)^{100}+\left(1+i\right)^{100}\)
Ta có: \(\left(1-i\right)^2=1+i^2-2i=-2i\)
\(\Rightarrow\left(1-i\right)^{100}=\left(1-i\right)^2.\left(1-i\right)^2...\left(1-i\right)^2\) (50 nhân tử)
\(=\left(-2i\right).\left(-2i\right)...\left(-2i\right)=\left(-2\right)^{50}.i^{50}=2^{50}.\left(i^2\right)^{25}=-2^{50}\)
Tượng tự: \(\left(1+i\right)^2=1+i^2+2i=2i\)
\(\Rightarrow\left(1+i\right)^{100}=2i.2i...2i=2^{50}.i^{50}=-2^{50}\)
\(\Rightarrow w=-2^{50}-2^{50}=-2^{51}\)
18.
\(z'=\left(\frac{1+i}{2}\right)\left(3-4i\right)=\frac{7}{2}-\frac{1}{2}i\)
\(\Rightarrow M\left(3;-4\right)\) ; \(M'\left(\frac{7}{2};-\frac{1}{2}\right)\)
\(S_{OMM'}=\frac{1}{2}\left|\left(x_M-x_O\right)\left(y_{M'}-y_O\right)-\left(x_{M'}-x_O\right)\left(y_M-y_O\right)\right|\)
\(=\frac{1}{2}\left|3.\left(-\frac{1}{2}\right)-\frac{7}{2}.\left(-4\right)\right|=\frac{25}{4}\)
Viết lại đề bài đi bạn, bạn nhầm đề rồi thì phải, ở \(z_1;z_2\) đầu biểu thức có gì đó ko ổn
\(\left|z\right|=1\Rightarrow z=cosx+i.sinx\)
\(z^3-z+2=cos3x+i.sin3x-cosx-i.sinx+2\)
\(=\left(cos3x-cosx+2\right)-i.\left(sin3x-sinx\right)\)
\(=\left(2-2sin2x.sinx\right)-i.2cos2x.sinx\)
\(=2\left[\left(1-sin2x.sinx\right)-i.cos2x.sinx\right]\)
\(\Rightarrow A=\left|z^3-z+2\right|=2\sqrt{\left(1-sin2x.sinx\right)^2+cos^22x.sin^2x}\)
\(A=2\sqrt{1-2sin2x.sinx+sin^22x.sin^2x+cos^22x.sin^2x}\)
\(A=2\sqrt{1-4sin^2x.cosx+sin^2x}\)
\(A=2\sqrt{1-4\left(1-cos^2x\right)cosx+1-cos^2x}\)
\(A=2\sqrt{4cos^3x-cos^2x-4cosx+2}\)
\(A_{max}\) khi \(4cos^3x-cos^2x-4cosx+2\) đạt max
Xét hàm \(f\left(t\right)=4t^3-t^2-4t+2\) trên \(\left[-1;1\right]\)
\(f'\left(t\right)=12t^2-2t-4=0\Rightarrow\left[{}\begin{matrix}t=-\frac{1}{2}\\t=\frac{2}{3}\end{matrix}\right.\)
\(\Rightarrow f\left(t\right)\) đạt max tại \(t=-\frac{1}{2}\) hay \(A_{max}\) khi \(a=cosx=-\frac{1}{2}\)
\(\Rightarrow b^2=sin^2x=1-cos^2x=\frac{3}{4}\)
\(\Rightarrow P=2a+4b^2=-1+3=2\)
Bài này chỉ nên làm theo kiểu trắc nghiệm, không bao giờ nên giải tự luận vì theo mình thì nó quá là trâu :(
Trắc nghiệm thì ta có sẵn 4 mặt phẳng rồi, gọi mặt phẳng đó là (P) thì \(AB\perp\left(P\right)\Rightarrow AM\perp\left(P\right)\Rightarrow\) phương trình \(\Delta'\) chính là phương trình đường thẳng qua M và \(\perp\left(P\right)\Rightarrow\) nhận vtpt của (P) là 1 vtcp \(\Rightarrow\) dễ dàng viết được 4 pt đường thẳng \(\Delta'\) chỉ sau 5s
Đường thẳng này trước hết phải cắt \(\Delta\) nên ta tìm giao điểm của \(\Delta'\) và \(\Delta\), pt nào ko cho giao điểm \(\Rightarrow\) loại ngay, nếu có giao điểm thì tìm tiếp giao điểm của \(\Delta'\) với mặt cầu và xem hoành độ có nguyên ko, nguyên \(\Rightarrow\) kiểm tra tỉ lệ khoảng cách, ko nguyên \(\Rightarrow\) loại.
Còn tự luận thì ý tưởng của mình thế này, nhưng chắc phải làm cả tiếng đồng hồ mất:
Chia làm 2 trường hợp: \(\overrightarrow{AB}=3\overrightarrow{AM}\) và \(\overrightarrow{AB}=-3\overrightarrow{AM}\), nếu hên sẽ đúng luôn ngay từ trường hợp đầu tiên :D
Gọi \(A\left(a+3;-a-1;a-2\right)\Rightarrow\) từ tỉ lệ vecto suy ra tọa độ B có 3 yếu tố phụ thuộc vào \(a\), thay tọa độ đó vào pt mặt cầu \(\Rightarrow\) cái nào có hoành độ nguyên thì nhận
- Tìm được tọa độ B \(\Rightarrow\) tọa độ A \(\Rightarrow\) viết pt trung trực
14.
\(d\left(I;\left(P\right)\right)=\frac{\left|1-2.2+2-8\right|}{\sqrt{1^2+\left(-2\right)^2+\left(-2\right)^2}}=3\)
Áp dụng định lý Pitago:
\(R=\sqrt{4^2+d^2\left(I;\left(P\right)\right)}=\sqrt{4^2+3^2}=5\)
Phương trình mặt cầu:
\(\left(x-1\right)^2+\left(y-2\right)^2+\left(z+1\right)^2=25\)
15.
\(\overrightarrow{AB}=\left(2;1;-2\right)\) ; \(\overrightarrow{AC}=\left(-12;6;0\right)\)
\(\Rightarrow\left[\overrightarrow{AB};\overrightarrow{AC}\right]=\left(12;24;24\right)=12\left(1;2;2\right)\)
\(\Rightarrow\) Mặt phẳng (ABC) nhận \(\left(1;2;2\right)\) là 1 vtpt
18.
\(D\in Ox\Rightarrow D\left(a;0;0\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AD}=\left(a-3;4;0\right)\\\overrightarrow{BC}=\left(4;0;-3\right)\end{matrix}\right.\)
\(AD=BC\Leftrightarrow\left(a-3\right)^2+4^2=4^2+\left(-3\right)^2\)
\(\Leftrightarrow\left(a-3\right)^2=9\Rightarrow\left[{}\begin{matrix}a=0\\a=6\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}D\left(0;0;0\right)\\D\left(6;0;0\right)\end{matrix}\right.\)
11.
Mặt cầu (S) tâm \(I\left(1;-2;0\right)\) bán kính \(R=\sqrt{1^2+\left(-2\right)^2-\left(-4\right)}=3\)
\(d\left(I;\left(P\right)\right)=\frac{\left|1-2-0+4\right|}{\sqrt{1^2+1^2+\left(-1\right)^2}}=\sqrt{3}\)
Gọi bán kính đường tròn (C) là \(r\)
Áp dụng định lý Pitago:
\(r=\sqrt{R^2-d^2\left(I;\left(P\right)\right)}=\sqrt{6}\)
Diện tích đường tròn: \(S=\pi r^2=6\pi\)
Gọi vecto chỉ phương của tiếp tuyến là \(\overrightarrow{u}_{(a,b,c)}\). Ta có :
\(\overrightarrow {AC}=(-1,-1,0);\overrightarrow {n}_{P}=(2,1,1)\)
Theo điều kiện đề bài \(\overrightarrow{u}\perp \overrightarrow{AC},\overrightarrow{u}\perp \overrightarrow{n}_{P}\Rightarrow \overrightarrow{u}=[\overrightarrow{AC},\overrightarrow{n}_{P}]=(-1,1,1)\)
Do đó phương tiếp tuyến có dạng \(\frac{x-2}{-1}=y-2=z\), tức đáp án $B$ là đáp án đúng
Lời giải:
Áp dụng BĐT Cô-si cho các số không âm:
\(1001x^2+1001z^2\geq 2\sqrt{1001x^2.1001z^2}=2|1001xz|\geq 2002xz\)
\(18x^2+\frac{25}{2}y^4\geq 2\sqrt{18x^2.\frac{25}{2}y^4}=2|15xy^2|\geq 30xy^2\)
\(\frac{3}{2}y^4+6z^2\geq 2\sqrt{\frac{3}{2}y^4.6z^2}=2|3y^2z|\geq 6y^2z\)
\(4y^4\geq 0\)
Cộng các BĐT trên theo vế, ta có đpcm.
Dấu "=" xảy ra khi $x=y=z=0$
Lời giải:
Áp dụng BĐT Cô-si cho các số không âm:
\(1001x^2+1001z^2\geq 2\sqrt{1001x^2.1001z^2}=2|1001xz|\geq 2002xz\)
\(18x^2+\frac{25}{2}y^4\geq 2\sqrt{18x^2.\frac{25}{2}y^4}=2|15xy^2|\geq 30xy^2\)
\(\frac{3}{2}y^4+6z^2\geq 2\sqrt{\frac{3}{2}y^4.6z^2}=2|3y^2z|\geq 6y^2z\)
\(4y^4\geq 0\)
Cộng các BĐT trên theo vế, ta có đpcm.
Dấu "=" xảy ra khi $x=y=z=0$