Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\frac{x^2}{16}=\frac{24}{25}\Rightarrow x^2=\frac{16.24}{25}=\frac{384}{25}\)
\(\Rightarrow x=\frac{8\sqrt{6}}{25}\)hoặc \(x=-\frac{8\sqrt{6}}{25}\)
b)\(\frac{x}{y}=\frac{9}{10}\Leftrightarrow\frac{x}{9}=\frac{y}{10}=\frac{y-x}{10-9}=\frac{120}{1}=120\)
\(\Rightarrow x=120.9=1080\)và \(y=120.10=1200\)
c)\(\frac{x}{3}=\frac{y}{5}=\frac{x+y}{3+5}=-\frac{32}{8}=-4\)
\(\Rightarrow x=-4.3=-12\)và \(y=-4.5=-20\)
d)\(4x=5y\Rightarrow\frac{x}{5}=\frac{y}{4}\Rightarrow\frac{2x}{10}=\frac{y}{4}=\frac{y-2x}{4-10}=\frac{-5}{-6}=\frac{5}{6}\)
\(\Rightarrow x=\frac{5}{6}.5=\frac{25}{6}\)và \(y=\frac{5}{6}.4=\frac{10}{3}\)
a) \(\frac{x^2}{16}=\frac{24}{25}\)
\(x^2=\frac{24}{25}\cdot16\)
\(x^2=\frac{384}{25}\)
\(x=\sqrt{\frac{384}{25}}=\frac{8\sqrt{6}}{5}\)
Vậy \(x=\frac{8\sqrt{6}}{5}\)
b) \(\frac{x}{y}=\frac{9}{10}\Rightarrow\frac{y}{10}=\frac{x}{9}\)
Áp dụng t/c của dãy tỉ số bằng nhau:
\(\frac{y}{10}=\frac{x}{9}=\frac{y-x}{10-9}=120\)
\(\Rightarrow y=120\cdot10=1200\)
\(x=120\cdot9=1080\)
Vậy y= 1200 , x= 1080
c) Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{3}=\frac{y}{5}=\frac{x+y}{3+5}=\frac{-32}{8}=-4\)
\(\Rightarrow x=-4\cdot3=-12\)
\(y=-4\cdot5=-20\)
Vậy x=-12 và y= -20
d) \(4x=5y\Rightarrow\frac{x}{5}=\frac{y}{4}\Rightarrow\frac{y}{4}=\frac{2x}{10}\)
Áp dụng t/c của dãy tỉ số bằng nhau:
\(\frac{y}{4}=\frac{2x}{10}=\frac{y-2x}{4-10}=\frac{-5}{-6}=\frac{5}{6}\)
\(\Rightarrow y=\frac{5}{6}\cdot4=\frac{10}{3}\)
\(x=\frac{5}{6}\cdot5=\frac{25}{6}\)
Vậy y= 10/3 và x=25/6
Ap dụng tính chất DTSBN ta có
\(\frac{x}{9}=\frac{y}{3}=\frac{z}{8}=\frac{x-y+x}{9-3+8}=\frac{56}{14}=4\)
\(+\frac{x}{9}=4=>x=36\)
\(+\frac{y}{3}=4=>y=12\)
\(+\frac{z}{8}=4=>z=32\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có
\(\frac{x}{9}=\frac{y}{3}=\frac{z}{8}=\frac{x-y+z}{9-3+8}=\frac{56}{14}=4\)
=> \(\hept{\begin{cases}\frac{x}{9}=4\\\frac{y}{3}=4\\\frac{z}{8}=4\end{cases}}\) => \(\hept{\begin{cases}x=4.9=36\\y=4.3=12\\z=4.8=32\end{cases}}\)
Vậy ....
1) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{y}=\frac{17}{3}\) => \(\frac{x}{17}=\frac{y}{3}=\frac{x+y}{17+3}=\frac{-60}{20}=-3\)
=> \(\hept{\begin{cases}\frac{x}{17}=-3\\\frac{y}{3}=-3\end{cases}}\) => \(\hept{\begin{cases}x=-51\\y=-9\end{cases}}\)
Vậy ....
2) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{19}=\frac{y}{21}\)=> \(\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)
=> \(\hept{\begin{cases}\frac{x}{19}=2\\\frac{y}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=38\\y=42\end{cases}}\)
vậy ...
3) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
=> \(\hept{\begin{cases}\frac{x^2}{9}=4\\\frac{y^2}{16}=4\end{cases}}\) => \(\hept{\begin{cases}x^2=36\\y^2=64\end{cases}}\) => \(\hept{\begin{cases}x=\pm6\\y=\pm8\end{cases}}\)
Vậy ...
4) Ta có: \(\frac{x}{y}=\frac{10}{9}\) => \(\frac{x}{10}=\frac{y}{9}\)
\(\frac{y}{z}=\frac{3}{4}\) => \(\frac{y}{3}=\frac{z}{4}\) => \(\frac{y}{9}=\frac{z}{12}\)
=> \(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}=\frac{x-y+z}{10-9+12}=\frac{78}{13}=6\)
=> \(\hept{\begin{cases}\frac{x}{10}=6\\\frac{y}{9}=6\\\frac{z}{12}=6\end{cases}}\) => \(\hept{\begin{cases}x=60\\y=54\\z=72\end{cases}}\)
Vậy ...
\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\)
\(\Rightarrow\frac{6x}{11.18}=\frac{9y}{2.18}=\frac{18z}{5.18}\)
\(\Rightarrow\frac{x}{33}=\frac{y}{4}=\frac{z}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{-120}{-24}=5\)
\(\Rightarrow x=165;y=20;z=25\)
Ai nhanh mình cài cho 5 đúng
x/y = 9/10 <=> x/9= y/10
Aps dụng tính chất dãy tr số bằng nhau ta có :
x/9 = y/10 <=> y-x/10-9 = 120/1 = 120
=.> x/9 = 120 <=> x=
y/10 = 120 <=> y =
tự tính nha bn vs lại số lớn bn xem lại đề họ tớ nha ( nếu sai ssó thì cx lm tương tự vậy thôi)