Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3-y^3+z^3+3xyz\)
\(=\left(x-y\right)^3+3xy\left(x-y\right)+z^3+3xyz\)
\(=\left(x-y+z\right)\left[\left(x-y\right)^2-\left(x-y\right)z+z^2\right]+3xy\left(x-y+z\right)\)
\(=\left(x-y+z\right)\left(x^2+y^2+z^2+xy+yz-zx\right)\)
\(x^3-y^3-z^3-3xyz\)
\(=\left(x-y\right)^3+3xy\left(x-y\right)-z^3-3xyz\)
\(=\left(x-y-z\right)\left[\left(x-y\right)^2+\left(x-y\right)z+z^2\right]+3xy\left(x-y-z\right)\)
\(=\left(x-y-z\right)\left(x^2+y^2+z^2+xy-yz+zx\right)\)
a/ \(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)
\(=\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2-3xy\right]\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
Vậy...
b/ \(\left(x+y+z\right)^3-x^3-y^3-z^3\)
\(=\left(x+y\right)^3+3\left(x+y\right)^2z+3\left(x+y\right)z^2+z^3-x^3-y^3-z^3\)
\(=\left(x+y\right)^3+\left[3\left(x+y\right)^2z+3\left(x+y\right)z^2\right]-x^3-y^3\)
\(=x^3+3x^2y+3xy^2+y^3+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3\)
\(=3xy\left(x+y\right)+3z\left(x+y\right)\left(x+y+z\right)\)
\(=3\left(x+y\right)\left[xy+z\left(x+y+z\right)\right]\)
\(=3\left(x+y\right)\left(x+z\right)\left(y+z\right)\)
Vậy..
a) Đặt a+b-c=x , b+c-a=y, c+a-b=z
\(\Rightarrow\left(a+b+c\right)^3-x^3-y^3-z^3\)
Có x + y +z = a+b-c + b+c-a+c+a-b = a+b+c
\(\Rightarrow\left(x+y+z\right)^3-x^3-y^3-z^3\)
\(=\left[\left(x+y\right)+z^3\right]-x^3-y^3-z^3\)
\(=\left(x+y\right)^3+z^3+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3-z^3\)
\(=x^3+y^3+3xy\left(x+y\right)+z^3+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3-z^3\)\(=3\left(x+y\right)\left(xy+xz+yz+z^2\right)\)
\(=3\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]\)
\(=3\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
Áp dụng hằng đẳng thức trên ta có
3(a+b-c+b+c-a)(b+c-a+c+a-b)(a+b-c+c+a-b)
= 3.2b.2c.2a
= 24abc
a ) \(\left(x+y+z\right)^2=x^2+y^2+z^{2^{ }}+2xy+2yz+2zx\)
Biến đổi vế trái ta được :
\(\left(x+y+z\right)^2=\left(x+y+z\right)\left(x+y+z\right)\)
\(=x^2+xy+xz+xy+y^2+yz+zx+zy+z^2\)
\(=x^2+y^2+z^{2^{ }}+2xy+2yz+2zx\)
Vậy \(\left(x+y+z\right)^2=x^2+y^2+z^{2^{ }}+2xy+2yz+2zx\)
Bài 1:
\(A=a^4-2a^3+3a^2-4a+5\)
\(=(a^4-2a^3+a^2)+2a^2-4a+5\)
\(=(a^4-2a^3+a^2)+2(a^2-2a+1)+3\)
\(=(a^2-a)^2+2(a-1)^2+3\)
\(=a^2(a-1)^2+2(a-1)^2+3=(a-1)^2(a^2+2)+3\)
Vì \((a-1)^2\geq 0,\forall a\in\mathbb{R}; a^2+2>0, \forall a\)
\(\Rightarrow A=(a-1)^2(a^2+2)+3\geq 0+3=3\)
Vậy \(A_{\min}=3\Leftrightarrow (a-1)^2=0\Leftrightarrow a=1\)
Bài 2:
a)
\(M=3xyz+x(y^2+z^2)+y(x^2+z^2)+z(x^2+y^2)\)
\(=3xyz+x^2y+x^2z+yx^2+yz^2+zx^2+zy^2\)
\(=(x^2y+xy^2+xyz)+(y^2z+yz^2+xyz)+(zx^2+z^2x+xyz)\)
\(=xy(x+y+z)+yz(y+z+x)+xz(z+x+y)\)
\(=(x+y+z)(xy+yz+xz)\)
b)
\(Q=(a+b+c)^3-a^3-b^3-c^3\)
\(=[(a+b)+c]^3-a^3-b^3-c^3\)
\(=(a+b)^3+c^3+3(a+b)^2c+3(a+b)c^2-a^3-b^3-c^3\)
\(=a^3+b^3+3ab^2+3a^2b+c^3+3(a+b)^2c+3(a+b)c^2-a^3-b^3-c^3\)
\(=3ab(a+b)+3(a+b)c(a+b+c)\)
\(=3(a+b)[ab+c(a+b+c)]=3(a+b)[a(b+c)+c(b+c)]\)
\(=3(a+b)(b+c)(a+c)\)
a,Ta có:
x³ + y³ + z³ - 3xyz
= (x+y)³ - 3xy(x-y) + z³ - 3xyz
= [(x+y)³ + z³] - 3xy(x+y+z)
= (x+y+z)³ - 3z(x+y)(x+y+z) - 3xy(x-y-z)
= (x+y+z)[(x+y+z)² - 3z(x+y) - 3xy]
= (x+y+z)(x² + y² + z² + 2xy + 2xz + 2yz - 3xz - 3yz - 3xy)
= (x+y+z)(x² + y² + z² - xy - xz - yz)
b, Từ:
x + y + z = 0
=> x + y = -z
<=> (x + y)^3 = (-z)^3
<=> x^3 + 3x^2y + 3xy^2 + y^3 = -z^3
<=> x^3 + y^3 + z^3 = -3x^2y - 3xy^2
<=> x^3 + y^3 + z^3 = -3xy(x+y)
<=> x^3 + y^3 + z^3 = -3xy(-z)
<=> x^3 + y^3 + z^3 = 3xyz
a, ( x + y )3 - x3 - y3 = x3+3x2y+3xy2+y3- x3 - y3 = 3x2y+3xy2 = 3xy( x + y)
b, x3 + y3 + z3 - 3xyz = x3 + 3x2y+3xy2+y3 + z3 - 3x2y-3xy2 -3xyz = (x+y)^3 + z^3 - 3xy( x + y + z)
(x+y+z)[(x+y)^2 - (x+y)z + z^2 ] - 3xy( x + y + z) = (x+y+z) ( x^2 + 2xy + y^2 - xz - yz + z^2 ) - 3xy(x+y+z)
= (x+y+z) ( x^2 + 2xy + y^2 - xz - yz + z^2 - 3xy)
bài tieps theo thì tách từng cái ra rồi rút gọc, còn bnhiu thì đưa 3 ra ngoài
a)\(x^3+y^3+z^3-3xyz\)
\(=x^3+3x^2y+3xy^2+y^3+z^3-3xyz-3x^2y-3xy^2\)
\(=\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)\)
\(=\left[\left(x+y\right)+z\right]\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xz-yz+2xy\right)-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xz-yz-xy\right)\)
\(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xy-yz+z^2-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
\(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3\)
\(=a^3-3ab\left(a-b\right)-b^3+b^3-3bc\left(b-c\right)-c^3+c^3-3ca\left(c-a\right)-a^3\)
\(=3\left(b-a\right)\left(c-a\right)\left(c-b\right)\)