Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
voi x,y,z>0 ta co
ap dung bdt co si ta co
\(T>=3\sqrt[3]{\sqrt{\left(\frac{x^2+1}{x^2}+\frac{1}{y^2}\right)\left(\frac{y^2+1}{y^2}+\frac{1}{z^2}\right)\left(\frac{z^2+1}{z^2}+\frac{1}{x^2}\right)}}\)
=\(3\sqrt[3]{\sqrt{\left(1+\frac{1}{x^2}+\frac{1}{y^2}\right)\left(1+\frac{1}{y^2}+\frac{1}{z^2}\right)\left(1+\frac{1}{z^2}+\frac{1}{x^2}\right)}}\)
>=\(3\sqrt[3]{\sqrt{3\sqrt[3]{\frac{1}{x^2y^2}}.3\sqrt[3]{\frac{1}{y^2z^2}}.3\sqrt[3]{\frac{1}{x^2z^2}}}}=3\sqrt[3]{\sqrt{27\sqrt[3]{\frac{1}{\left(xyz\right)^4}}}}\)
=\(3\sqrt[3]{\sqrt{27.\frac{1}{xyz}.\sqrt[3]{\frac{1}{xyz}}}}=3\sqrt{3}.\sqrt[9]{\frac{1}{\left(xyz\right)^2}}\)
ap dung bdt co si ta co
\(x+y+z>=3\sqrt[3]{xyz}\)
<=>3>=\(3\sqrt[3]{xyz}\left(dox+y+z=3\right)\)
<=>xyz<=1
<=>1/xyz>=1
<=>\(\sqrt[9]{\frac{1}{\left(xyz\right)^2}}>=1\)
do do T>=\(3\sqrt{3}\)
dau = xay ra <=>x=y=z=1
\(x+y+z=0\Rightarrow\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+xz+yz\right)=0\)
\(\Rightarrow1+2\left(xy+xz+yz\right)=0\)
\(\Rightarrow2\left(xy+xz+yz\right)=-1\Rightarrow xy+xz+yz=-\frac{1}{2}\)
\(\Rightarrow\left(xy+xz+yz\right)^2=\frac{1}{4}\)
\(\Rightarrow x^2y^2+x^2z^2+y^2z^2+2xyz\left(x+y+z\right)=\frac{1}{4}\Rightarrow x^2y^2+x^2z^2+y^2z^2=\frac{1}{4}\)
Có:\(\left(x^2+y^2+z^2\right)^2=1\Rightarrow x^4+y^4+z^4+2\left(x^2y^2+x^2z^2+y^2z^2\right)=1\)
\(\Rightarrow x^4+y^4+z^4+\frac{2.1}{4}=1\Rightarrow x^4+y^4+z^4=\frac{1}{2}\)
\(x^4+y^4+z^4\ge\frac{\left(x^2+y^2+z^2\right)^2}{3}\ge\frac{\left[\frac{\left(x+y+z\right)^2}{3}\right]^2}{3}=\frac{\left(x+y+z\right)^4}{27}=\frac{16}{27}..\)
Min = 16/27 khi x =y =z = 2/3
\(\left(x+y+z\right)^2=x^2+y^2+z^2+xy+yz+zx=2\)
mà \(xy+yz+zx\le x^2+y^2+z^2\)
\(\Rightarrow x^2+y^2+z^2\ge\frac{4}{3}\)
Tương tự:\(x^4+y^4+z^4\ge\left(x^2+y^2+z^2\right)\cdot\frac{1}{3}\ge\frac{4^2}{3^2}\cdot\frac{1}{3}=\frac{16}{27}\)
Dấu ''='' xảy ra khi x=y=z=2/3
vì \(x^2+y^2+z^2=1\)
\(\Rightarrow0\le x;y;z\le1\)
\(2P=2\left(xy+xz+yz\right)+x^2\left(y-z\right)^2+y^2\left(x-z\right)^2+z^2\left(x-y\right)^2-2\left(x^2+y^2+z^2\right)-2\)
\(2P-2=-\left(x-y\right)^2-\left(x-z\right)^2-\left(y-z\right)^2+x^2\left(y-z\right)^2+y^2\left(x-z\right)^2+z^2\left(x-y\right)^2\)
\(2P-2=\left(x^2-1\right)\left(y-z\right)^2+\left(y^2-1\right)\left(x-z\right)^2+\left(z^2-1\right)\left(x-y\right)^2\le0\)
\(2P-2\le0\)
\(2P\le2\)
\(P\le1\)
GTLN P là 1 khi x=y=z=\(\frac{\sqrt{3}}{3}\)
tth_new_dep_trai_lai_lang_solo_SOS_Ji_Chen_tuoi_tom nhờ mình đăng hộ nha!
Ta có: \(1+x^2=xy+yz+xz+x^2=\left(x+y\right)\left(x+z\right)\)
\(1+y^2=xy+yz+xz+y^2=\left(z+y\right)\left(x+y\right)\)
\(1+z^2=xy+yz+xz+z^2=\left(z+x\right)\left(z+y\right)\)
Thay vào biểu thức A, ta có bt sau:
\(A=x\sqrt{\frac{\left(y+z\right)\left(x+y\right)\left(x+z\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}\)
\(+y\sqrt{\frac{\left(x+z\right)\left(y+z\right)\left(x+y\right)\left(x+z\right)}{\left(y+z\right)\left(x+y\right)}}\)
\(+z\sqrt{\frac{\left(x+y\right)\left(y+z\right)\left(x+z\right)\left(x+y\right)}{\left(x+z\right)\left(z+y\right)}}\)
\(=x\sqrt{\left(y+z\right)^2}+y\sqrt{\left(x+z\right)^2}+z\sqrt{\left(x+y\right)^2}\)
\(=x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)\)(x,y,z dương)
\(=2\left(xy+xz+yz\right)=2.1=2\)