Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1+xy=2\left(x^2+y^2\right)\ge4\left|xy\right|\ge4xy\)
\(\Rightarrow3xy\le1\Rightarrow xy\le\frac{1}{3}\)
\(1+xy\ge4\left|xy\right|\ge-4xy\Rightarrow5xy\ge-1\Rightarrow xy\ge-\frac{1}{5}\)
\(\Rightarrow-\frac{1}{5}\le xy\le\frac{1}{3}\)
\(P=7\left(x^4+y^4+2x^2y^2\right)-10x^2y^2=7\left(x^2+y^2\right)^2-10x^2y^2\)
\(P=\frac{7}{4}\left(xy+1\right)^2-10x^2y^2=-\frac{33}{4}x^2y^2+\frac{7}{2}xy+\frac{7}{4}\)
Đặt \(t=xy\Rightarrow P=f\left(t\right)=-\frac{33}{4}t^2+\frac{7}{2}t+\frac{7}{4}\) với \(t\in\left[-\frac{1}{5};\frac{1}{3}\right]\)
Xét \(f\left(t\right)\) trên \(\left[-\frac{1}{5};\frac{1}{3}\right]\)
\(f\left(-\frac{1}{5}\right)=\frac{18}{25}\) ; \(f\left(\frac{1}{3}\right)=2\) ; \(f\left(-\frac{b}{2a}\right)=f\left(\frac{7}{33}\right)=\frac{70}{33}\)
\(\Rightarrow M=\frac{70}{33}\) ; \(m=\frac{18}{25}\)
Mình làm chả biết có đúng ko :< Chắc phải nhờ anh Nguyễn Việt Lâm check hộ :< Cái này dùng mấy bđt thuần nhất được ko anh?
\(x+y=x^2+y^2-xy\ge\frac{\left(x+y\right)^2}{2}-\frac{1}{4}\left(x+y\right)^2=\frac{1}{4}\left(x+y\right)^2\)
\(\Leftrightarrow4\left(x+y\right)-\left(x+y\right)^2\ge0\)
\(\Leftrightarrow\left(x+y\right)\left(4-x-y\right)\ge0\)
\(\Leftrightarrow4\ge x+y\ge0\)
\(max=4\Leftrightarrow x=y=2\)
\(min=0\Leftrightarrow x=y=0\)
Ta có: \(\sqrt{x^2+y^2+4x-2y+5}+\sqrt{x^2+y^2-8x-14y+65}=6\sqrt{2}\)
\(\Leftrightarrow\sqrt{\left(x+2\right)^2+\left(y-1\right)^2}+\sqrt{\left(4-x\right)^2+\left(7-y\right)^2}=6\sqrt{2}\left(^∗\right)\)
Xét hai vectơ \(\overrightarrow{u}=\left(x+2;y-1\right)\)và \(\overrightarrow{v}=\left(4-x;7-y\right)\)
Ta có: \(\overrightarrow{u}+\overrightarrow{v}=\left(6;6\right)\Rightarrow\left|\overrightarrow{u}+\overrightarrow{v}\right|=\sqrt{6^2+6^2}=6\sqrt{2}\)
Do vậy \(\left(^∗\right)\)trở thành\(\overrightarrow{u}+\overrightarrow{v}=\left|\overrightarrow{u}+\overrightarrow{v}\right|\)
Điều này xảy ra khi và chỉ khi \(\overrightarrow{u}\)và \(\overrightarrow{v}\)cùng hướng
\(\Leftrightarrow\hept{\begin{cases}\left(x+2\right)\left(7-y\right)=\left(y-1\right)\left(4-x\right)\\\left(x+2\right)\left(4-x\right)\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=x+3\\-2\le x\le4\end{cases}}\)
Khi y = x + 3 thì \(x^2+y^2-2x+2y+2=2x^2+6x+17\)
Xét hàm số \(f\left(x\right)=2x^2+6x+17\)trên đoạn \(\left[-2;4\right]\)
Ta có: \(-\frac{6}{2.2}=\frac{-3}{2}\in\left[-2;4\right]\)và \(f\left(-2\right)=13;f\left(-\frac{3}{2}\right)=\frac{25}{2};f\left(4\right)=73\)
Suy ra \(|^{min}_{\left[-2;4\right]}f\left(x\right)=\frac{25}{2}\);\(|^{max}_{\left[-2;4\right]}f\left(x\right)=73\)
Do đó \(m=\frac{25}{2};M=73\)và \(n+M=\frac{171}{2}\)
Vậy \(n+M=\frac{171}{2}\)
\(P=\sqrt{x^4+x^2y^2}+x^2=\sqrt{x^4+\frac{1}{x^2}}+x^2\)
Ta có: \(x^4+\frac{1}{x^2}=x^4+\frac{1}{8x^2}+\frac{1}{8x^2}+...+\frac{1}{8x^2}\ge9\sqrt[9]{x^4.\left(\frac{1}{8x^2}\right)^8}\)
\(=9\sqrt[9]{\frac{1}{8^8.x^{12}}}\)
=> \(P=3\sqrt[18]{\frac{1}{8^8.x^{12}}}+x^2\)
\(=\sqrt[18]{\frac{1}{8^8x^{12}}}+\sqrt[18]{\frac{1}{8^8x^{12}}}+\sqrt[18]{\frac{1}{8^8x^{12}}}+x^2\)
\(\ge4\sqrt[4]{\left(\sqrt[18]{\frac{1}{8^8x^{12}}}\right)^3.x^2}\)
\(=4.\left(\frac{1}{8^{\frac{1}{3}}.x^{\frac{1}{2}}}\right).x^2=2\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x^4=\frac{1}{8x^2}\\x^2=\sqrt[8]{\frac{1}{8^8x^{12}}}\end{cases}}\)<=> x^2 = 1/2 khi đó y = 2 , x = \(\frac{1}{\sqrt{2}}\)
Vậy GTNN của P = 2.
Bạn tham khảo nhé!
Câu hỏi của Lê VĂn Chượng - Toán lớp 10 - Học toán với OnlineMath
Bạch Dạ Y đồng ý kết bn với mh đi