Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có:
\(m^3(x-2)-8(x+m)=4m^2\)
\(\Leftrightarrow x(m^3-8)=2m^3+4m^2+8m\)
\(\Leftrightarrow x(m-2)(m^2+2m+4)=2m(m^2+2m+4)\)
\(\Leftrightarrow (m^2+2m+4)[x(m-2)-2m]=0\)
\(\Leftrightarrow x(m-2)-2m=0\) (do \(m^2+2m+4=(m+1)^2+3>0\forall m\) )
Để PT có nghiệm duy nhất thì \(m-2\neq 0\Leftrightarrow m\neq 2\) (1)
Khi đó nghiệm của PT là: \(x=\frac{2m}{m-2}\leq 1\Leftrightarrow 2+\frac{4}{m-2}\leq 1\)
\(\Leftrightarrow \frac{4}{m-2}\leq -1\)
\(0> m-2\geq -4\Leftrightarrow 2> m\geq -2\) (2)
Vậy kết hợp (1)(2) suy ra \(2> m\geq -2\)
Thay x=-1 vào (*), ta được:
\(-m^2+4=2m+4\)
\(\Leftrightarrow-m^2-2m=4-4\)
\(\Leftrightarrow-m\left(m+2\right)=0\)
\(\Leftrightarrow-m=0\)hoặc \(m+2=0\)
\(\Leftrightarrow m=0\)hoặc \(m=-2\)
Vậy khi m = 0, m = -2 thì (*) có nghiệm duy nhất là x = -1
bài 1 câu a,b tự làm nhé " thay k=-3 vào là ra
bài 1 câu c "
\(4x^2-25+k^2+4kx=0.\)
thay x=-2 vào ta được
\(16-25+k^2+-8k=0\)
\(-9+k^2-8k=0\Leftrightarrow k^2+k-9k-9=0\)
\(k\left(k+1\right)-9\left(k+1\right)=0\)
\(\left(k+1\right)\left(k-9\right)=0\)
vậy k=1 , 9 thì pt nhận x=-2
bài 2 xác đinh m ? đề ko có mờ đề phải là xác định a nếu là xác định a thì thay x=1 vào rồi tính là ra
bài 3 cũng éo hiểu xác định a ? a ở đâu
1 là phải xác đinh m , nếu là xác đinh m thì thay x=-2 vào rồi làm
. kết luận của chúa Pain đề như ###
\(\Leftrightarrow\left(2m-1\right)\left(2m+1\right)x-m\left(2m-1\right)=0\)
\(\Leftrightarrow\left(2m-1\right)\left(\left(2m+1\right)x-m\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2m-1=0\\\left(2m+1\right)x-m=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m=\frac{1}{2}\left(1\right)\\x=\frac{m}{2m+1}\left(2\right)\end{matrix}\right.\)
b/Nếu (1) là nghiệm thì PT đúng \(\forall x\in R\) nên \(m\ne\frac{1}{2}\) để x có nghiệm duy nhất
Ta có (2)>1/2\(\Rightarrow\frac{m}{2m+1}>\frac{1}{2}\)\(\Leftrightarrow\frac{2m}{4m+2}-\frac{2m+1}{2m+2}>0\)
\(\Leftrightarrow-\frac{1}{4m+2}>0\)\(\Rightarrow4m+2< 0\Leftrightarrow2m+1< 0\Leftrightarrow m< -\frac{1}{2}\)