Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Phương trình có hai nghiệm phân biệt khi \(\Delta'=\left(m+1\right)^2-\left(4m^2-2m-2\right)=-3m^2+4m+3>0\)
\(\Leftrightarrow\dfrac{2-\sqrt{13}}{3}< m< \dfrac{2+\sqrt{13}}{3}\)
b, Yêu cầu bài toán thỏa mãn khi:
\(\left\{{}\begin{matrix}\Delta'>0\\2\left(m+1\right)>0\\4m^2-2m-2>0\end{matrix}\right.\)
\(\Leftrightarrow...\)
để pt trên có 2 nghiệm pb thì \(\Delta'>0\)
<=> \(m^2+6m+9-4m-12>0\)
<=>\(m^2+2m-3>0\)
<=>\(\left(m-1\right)\left(m+3\right)>0\)
<=>\(\left[{}\begin{matrix}m>1\\m< -3\end{matrix}\right.\)
cho \(x_1,x_2\) là 2 nghiệm của pt và \(x_1< x_2\)
cần chứng minh \(x_1>-1\)
<=>\(-m-3-\sqrt{m^2+2m-3}>-1\)
<=>\(\sqrt{m^2+2m-3}>m+2\)
<=>\(\left[{}\begin{matrix}m^2+2m-3>m^2+4m+4\\m^2+2m-3>-m^2-4m-4\end{matrix}\right.\)
<=>\(\left[{}\begin{matrix}2m+7< 0\\2m^2+6m+1>0\end{matrix}\right.\)
<=>\(\left[{}\begin{matrix}m< \dfrac{-7}{2}\\m>\dfrac{-3+\sqrt{7}}{2}\\m< \dfrac{-3-\sqrt{7}}{2}\end{matrix}\right.\)
so với điều kiện ở đè bài =>\(m< \dfrac{-7}{2}\)thỏa yêu câu đề bài
KL: để pt có 2 nghiệm pb đều lớn hơn -1 thì \(m< \dfrac{-7}{2}\)
\(x^3-x^2+2mx-2m=0\)
\(\Leftrightarrow x^2\left(x-1\right)+2m\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+2m\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2=-2m\end{matrix}\right.\)
Để pt có 3 nghiệm \(\Rightarrow-2m>0\Rightarrow m< 0\)
a. Do vai trò 3 nghiệm như nhau, ko mất tính tổng quát giả sử \(x_1=1\) và \(x_2;x_3\) là nghiệm của \(x^2+2m=0\)
Để pt có 3 nghiệm pb \(\Rightarrow\left\{{}\begin{matrix}-2m>0\\-2m\ne1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< 0\\m\ne-\dfrac{1}{2}\end{matrix}\right.\)
Khi đó: \(x_2+x_3=0\Rightarrow x_1+x_2+x_3=1\ne10\) với mọi m
\(\Rightarrow\) Không tồn tại m thỏa mãn yêu cầu
b.
Giả sử pt có 3 nghiệm, khi đó \(\left[{}\begin{matrix}x_2=-\sqrt{-2m}< 0< 1\\x_3=\sqrt{-2m}\end{matrix}\right.\)
\(\Rightarrow\) Luôn có 1 nghiệm của pt âm \(\Rightarrow\) không tồn tại m thỏa mãn
Em coi lại đề bài
\(\Delta'=\left(m+3\right)^2-\left(4m+12\right)=m^2+2m-3>0\Rightarrow\left[{}\begin{matrix}m>1\\m< -3\end{matrix}\right.\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2\left(m+3\right)\\x_1x_2=4m+12\end{matrix}\right.\)
Pt có 2 nghiệm lớn hơn -1 khi: \(-1< x_1< x_2\Leftrightarrow\left\{{}\begin{matrix}\left(x_1+1\right)\left(x_2+1\right)>0\\\dfrac{x_1+x_2}{2}>-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2+x_1+x_2+1>0\\x_1+x_2>-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4m+12-2\left(m+3\right)+1>0\\-2\left(m+3\right)>-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>-\dfrac{7}{2}\\m< -2\end{matrix}\right.\) \(\Rightarrow-\dfrac{7}{2}< m< -2\)
Kết hợp điều kiện ban đầu \(\Rightarrow-\dfrac{7}{2}< m< -3\)
\(x^3-2\left(m+1\right)x^2-\left(2m+5\right)x+10+12m=0\)
<=> \(\left(x-2\right)\left(x^2-2mx-5-6m\right)=0\)
<=> \(\orbr{\begin{cases}x=2\\x^2-2mx-5-6m=0\left(1\right)\end{cases}}\)
Để phương trình ban đầu có 3 nghiệm phân biệt <=> phương trình (1) có 2 nghiệm phân biệt khác 2
<=> \(\hept{\begin{cases}\Delta'=m^2+5+6m>0\\2^2-2m.2-5-6m\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}m\in\left(-\infty;-5\right)v\left(-1;+\infty\right)\\m\ne-\frac{1}{10}\end{cases}}\)
a)
Làm từng cái
(1)để có hai nghiệm: \(m^2+m+1\ne0\) ta có
\(m^2+m+1=\left(m+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall m\)đúng với \(\forall m\)
(2) \(\Delta>0\Rightarrow\left(2m-3\right)^2-4\left(m-5\right)\left(m^2+m+1\right)>0\)
{để đó tý giải quyết sau }
(3) tích hai nghiệm phải dương
\(\Rightarrow x_1x_2=\dfrac{c}{a}>0\Rightarrow m-5>0\Rightarrow m>5\)
(4) tổng hai nghiệm phải dương
\(\Rightarrow-\dfrac{b}{a}>0\Rightarrow2m-3< 0\Rightarrow m< \dfrac{3}{2}\)
từ (3) (4) => không có m thỏa mãn => kết luận vô nghiệm
câu b)
có vẻ nhàn hơn
(1) \(\Delta'>0\Rightarrow9m^2-9m^2+2m-2=2m-2>0\Rightarrow m>1\)
(2)\(-\dfrac{b}{a}>0\Rightarrow m>0\)
(3) \(\dfrac{c}{a}>0\Rightarrow9m^2-2m+2>0\) đúng vơi mọi m
(1)(2)(3) nghiệm là: m>1
Cảm ơn ạ