K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2016

a)Có: \(\frac{a}{x}+\frac{b}{x-1}+\frac{c}{x+1}=\frac{a\left(x-1\right)\left(x+1\right)+bx\left(x+1\right)+cx\left(x-1\right)}{x\left(x-1\right)\left(x+1\right)}\)

\(\frac{a\left(x^2-1\right)+bx^2+bx+cx^2+cx}{x\left(x^2-1\right)}=\frac{ax^{2\:}-a+bx^2+bx+cx^2-cx}{x^3-x}\)

\(=\frac{\left(a+b+c\right)x^2+\left(b-c\right)x-a}{x^3-x}\)

Do đó:  \(\frac{6x^2-x-1}{x^3-x}=\frac{\left(a+b+c\right)x^2+\left(b-c\right)x-a}{x^3-x}\)

Đồng nhất hai phân thức trên ta được:

\(\begin{cases}a+b+c=6\\b-c=-1\\a=1\end{cases}\)\(\Leftrightarrow\begin{cases}a=1\\b=2\\c=3\end{cases}\)

Phần b tương tự

 

23 tháng 6 2017

\(VP=\frac{a}{x-1}+\frac{b}{x+1}+\frac{cx+d}{x^2+1}=\frac{a\left(x+1\right)+b\left(x-1\right)}{x^2-1}+\frac{cx+d}{x^2+1}\)

\(=\frac{ax+bx+a-b}{x^2-1}+\frac{cx+d}{x^2+1}=\frac{\left(ax+bx+a-b\right)\left(x^2+1\right)+\left(cx+d\right)\left(x^2-1\right)}{x^4-1}\)

\(=\frac{\left(a+b+c\right)x^3+\left(a-b+d\right)x^2+\left(a+b-c\right)x+\left(a-b-d\right)}{x^4-1}\)

Suy ra   \(\frac{6x^3-5x^2+3}{x^4-1}=\frac{\left(a+b+c\right)x^3+\left(a-b+d\right)x^2+\left(a+b-c\right)x+\left(a-b-d\right)}{x^4-1}\)

\(\Rightarrow\)  \(\left(a+b+c\right)x^3+\left(a-b+d\right)x^2+\left(a+b-c\right)x+\left(a-b-d\right)=6x^3-5x^2+3\)

Đồng nhất hệ số ta được  \(\hept{\begin{cases}a+b+c=6\\a-b+d=-5\end{cases}}\)  và  \(\hept{\begin{cases}a+b-c=0\\a-b-d=3\end{cases}}\)

Giải ra ta được a = 1; b = 2; c = 3; d = -4

23 tháng 6 2017

quy đồng lên rồi đồng nhất hệ số thôi bn

10 tháng 12 2016

b/ 

\(\frac{1}{x^3-1}=\frac{a}{x-1}+\frac{6x+c}{x^2+x+1}=\frac{\left(a+6\right)x^2+\left(c+a-6\right)x-c+a}{x^3-1}\)

Đồng nhất thức 2 vế ta được

\(\hept{\begin{cases}a+6=0\\c+a-6=0\\a-c=1\end{cases}}\)

Vô nghiệm vậy không tồn tại a, c thỏa cái đó

10 tháng 12 2016

a/ Ta có

\(\frac{10x-4}{x^3-4x}=\frac{a}{x}+\frac{b}{x-2}+\frac{c}{x+2}=\frac{\left(a+b+c\right)x^2+\left(2b-2c\right)x-4a}{x^3-4x}\)

Đồng nhất thức 2 vế ta được

\(\hept{\begin{cases}a+b+c=0\\2b-2c=10\\-4a=-4\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\c=-3\end{cases}}\)

8 tháng 2 2020

Câu 1 :

8 tháng 2 2020

a, Ta có : \(3\left(x-1\right)-2\left(x+3\right)=-15\)

=> \(3x-3-2x-6=-15\)

=> \(3x-3-2x-6+15=0\)

=> \(x=-6\)

Vậy phương trình có nghiệm là x = -6 .

b, Ta có : \(3\left(x-1\right)+2=3x-1\)

=> \(3x-3+2=3x-1\)

=> \(3x-3+2-3x+1=0\)

=> \(0=0\)

Vậy phương trình có vô số nghiệm .

c, Ta có : \(7\left(2-5x\right)-5=4\left(4-6x\right)\)

=> \(14-35x-5=16-24x\)

=> \(14-35x-5-16+24x=0\)

=> \(-35x+24x=7\)

=> \(x=\frac{-7}{11}\)

Vậy phương trình có nghiệm là \(x=\frac{-7}{11}\) .

Bài 2 :

a, Ta có : \(\frac{x}{30}+\frac{5x-1}{10}=\frac{x-8}{15}-\frac{2x+3}{6}\)

=> \(\frac{x}{30}+\frac{3\left(5x-1\right)}{30}=\frac{2\left(x-8\right)}{30}-\frac{5\left(2x+3\right)}{30}\)

=> \(x+3\left(5x-1\right)=2\left(x-8\right)-5\left(2x+3\right)\)

=> \(x+15x-3=2x-16-10x-15\)

=> \(x+15x-3-2x+16+10x+15=0\)

=> \(24x+28=0\)

=> \(x=\frac{-28}{24}=\frac{-7}{6}\)

Vậy phương trình có nghiệm là \(x=\frac{-7}{6}\) .

b, Ta có : \(\frac{x+4}{5}-x+4=\frac{x}{3}-\frac{x-2}{2}\)

=> \(\frac{6\left(x+4\right)}{30}-\frac{30x}{30}+\frac{120}{30}=\frac{10x}{30}-\frac{15\left(x-2\right)}{30}\)

=> \(6\left(x+4\right)-30x+120=10x-15\left(x-2\right)\)

=> \(6x+24-30x+120=10x-15x+30\)

=> \(6x+24-30x+120-10x+15x-30=0\)

=> \(-19x+114=0\)

=> \(x=\frac{-114}{-19}=6\)

Vậy phương trình có nghiệm là x = 6 .

14 tháng 8 2020

a)\(ĐKXĐ:x\ne0;-1\)

Ta có:\(\frac{x^3+1}{x}.\left(\frac{1}{x+1}+\frac{x-1}{x^2-x+1}\right)=\frac{x^3+1}{x}.\frac{\left(x^2-x+1\right)+\left(x+1\right)\left(x-1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\frac{x^3+1}{x}.\frac{x^2-x+1+\left(x^2-1\right)}{x^3+1}=\frac{2x^2-x}{x}=\frac{2x\left(x-1\right)}{x}=2\left(x-1\right)\)

a)có khả năng sai đề bài

b)Liệu có sai đề bài không

c)\(=\frac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{-\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)(phân số cuối có âm vì (1-x)=-(x-1)

\(=\frac{x^2+2+2x-2-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\)(Hơi tắt)

\(=\frac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{1}{x^2+x+1}\)

d)\(=\frac{x\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)}+\frac{x\left(x-2y\right)}{\left(x-2y\right)\left(x+2y\right)}+\frac{4xy}{\left(x-2y\right)\left(x+2y\right)}\)

\(=\frac{x^2+2xy+x^2-2xy+4xy}{\left(x-2y\right)\left(x+2y\right)}\)

\(=\frac{2x^2+4xy}{\left(x-2y\right)\left(x+2y\right)}=\frac{2x\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)}=\frac{2x}{x-2y}\)

a) Ta có: \(\frac{7}{8}x-5\left(x-9\right)=\frac{20x+1,5}{6}\)

\(\Leftrightarrow\frac{7x}{8}-5x+45-\frac{20x+1,5}{6}=0\)

\(\Leftrightarrow\frac{21x}{24}-\frac{120x}{24}+\frac{1080}{24}-\frac{4\left(20x+1,5\right)}{24}=0\)

\(\Leftrightarrow-99x+1080-4\left(20x+1,5\right)=0\)

\(\Leftrightarrow-99x+1080-80x-6=0\)

\(\Leftrightarrow1074-179x=0\)

\(\Leftrightarrow179x=1074\)

hay x=6

Vậy: x=6

b) Ta có: \(4\left(0,5-1,5x\right)=-\frac{5x-6}{3}\)

\(\Leftrightarrow2-6x=\frac{6-5x}{3}\)

\(\Leftrightarrow\frac{3\left(2-6x\right)}{3}-\frac{6-5x}{3}=0\)

\(\Leftrightarrow6-18x-6+5x=0\)

\(\Leftrightarrow-13x=0\)

mà -13≠0

nên x=0

Vậy: x=0

c) Ta có: \(\frac{x+4}{5}-x+4=\frac{x}{3}-\frac{x-2}{2}\)

\(\Leftrightarrow\frac{6\left(x+4\right)}{30}+\frac{30\left(-x+4\right)}{30}-\frac{10x}{30}+\frac{15\left(x-2\right)}{30}=0\)

\(\Leftrightarrow6\left(x+4\right)+30\left(4-x\right)-10x+15\left(x-2\right)=0\)

\(\Leftrightarrow6x+24+120-30x-10x+15x-30=0\)

\(\Leftrightarrow-19x+114=0\)

\(\Leftrightarrow-19x=-114\)

hay x=6

Vậy: x=6

d) Ta có: \(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\)

\(\Leftrightarrow\frac{21\left(4x+3\right)}{105}-\frac{15\left(6x-2\right)}{105}-\frac{35\left(5x+4\right)}{105}-\frac{315}{105}=0\)

\(\Leftrightarrow84x+63-90x+30-175x-140-315=0\)

\(\Leftrightarrow-181x-362=0\)

\(\Leftrightarrow-181x=362\)

hay x=-2

Vậy: x=-2

e) Ta có: \(\frac{1}{4}\left(x+3\right)=3-\frac{1}{2}\left(x+1\right)-\frac{1}{3}\left(x+2\right)\)

\(\Leftrightarrow\frac{x+3}{4}=3-\frac{x+1}{2}-\frac{x+2}{3}\)

\(\Leftrightarrow\frac{3\left(x+3\right)}{12}-\frac{36}{12}+\frac{6\left(x+1\right)}{12}+\frac{4\left(x+2\right)}{12}=0\)

\(\Leftrightarrow3x+9-36+6x+6+4x+8=0\)

\(\Leftrightarrow13x-13=0\)

\(\Leftrightarrow13x=13\)

hay x=1

Vậy: x=1