Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
=> \(\hept{\begin{cases}\frac{x^2}{9}=4\\\frac{y^2}{16}=4\end{cases}}\) => \(\hept{\begin{cases}x^2=4.9=36\\y^2=4.16=64\end{cases}}\) => \(\hept{\begin{cases}x=\pm6\\y=\pm8\end{cases}}\)
Vậy ...
\(\dfrac{x}{y}=\dfrac{4}{7}\Rightarrow\dfrac{x}{4}=\dfrac{y}{7}\Rightarrow\dfrac{3x^2}{48}=\dfrac{4y^2}{196}\)
và \(3x^2-4y^2=100\)
áp dụng t/c của dãy tỉ số = nhau ta có:
\(\dfrac{3x^2}{48}=\dfrac{4y^2}{196}=\dfrac{3x^2-4y^2}{48-196}=\dfrac{100}{-148}=-\dfrac{25}{37}\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=-\dfrac{400}{37}\\y^2=-\dfrac{4900}{37}\end{matrix}\right.\) => K có x,y nào t/m đề
1) Ta có: 5x = 2y = x/2 = y/5
Đặt \(\frac{x}{2}=\frac{y}{5}=k\) => \(\hept{\begin{cases}x=2k\\y=5k\end{cases}}\) (*)
Khi đó, ta có: x3y2 = 200
=> (2k)3.(5k)2 = 200
=> 8k3 . 25k2 = 200
=> 200k5 = 200
=> k5 = 1
=> k = 1
Thay k = 1 vào (*), ta được:
+) x = 2.1 = 2
+) y = 5.1 = 5
Vậy ...
Bài 1:
Ta có:
\(y-x=25\Rightarrow y=25+x\)
Mà \(7x=4y\Rightarrow7x=4\cdot\left(25+x\right)\)
\(7x=100+4x\)
\(\Rightarrow7x-4x=100\)
\(3x=100\)
\(x=\frac{100}{3}\)
bài 1 :
Ta có: 7x=4y ⇔ x/4=y/7
áp dụng tính chất dãy tỉ số bằng nhau ta có
x/4=y/7=(y-x)/(7-4)=100/3
⇒x= 4 x 100/3=400/3 ; y = 7 x 100/3=700/3
bài 2
ta có x/5 = y/6 ⇔ x/20=y/24
y/8 = z/7 ⇔ y/24=z/21
⇒x/20=y/24=z/21
ADTCDTSBN(bài 1 có)
x/20=y/24=z/21=(x+y)/(20+24)=69/48=23/16
⇒x= 20 x 23/16 = 115/4
y= 24x 23/16=138/2
z=21x23/16=483/16
a,
\(\frac{x}{5}=\frac{y}{7}\Leftrightarrow\frac{y}{7}=\frac{x}{5}=\frac{y-x}{7-5}=\frac{-10}{2}=-5\)[theo tính chất của dãy tỉ số bằng nhau]
=> x = -5.5 = -25
y = -5.7 = -35
b,
\(3x=4y\Leftrightarrow\frac{3x}{1}=\frac{4y}{1}=\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{4}}=\frac{x+y}{\frac{1}{3}+\frac{1}{4}}=-\frac{14}{\frac{7}{12}}=-24\)[theo tính chất của dãy tỉ số bằng nhau]
=> x = -24.1/3 = -8
y = -24*1/4 = -6
c,
\(\frac{4}{x}=\frac{2}{y}\Leftrightarrow\frac{8}{2x}=\frac{2}{y}=\frac{8-2}{2x-y}=\frac{6}{12}=\frac{1}{2}\)[theo tính chất của dãy tỉ số bằng nhau]
=> x = 4: 1/2 = 8
y = 2: 1/2 = 4
Ta có:\(\frac{x}{4}=\frac{y}{7}\Rightarrow\frac{x^2}{16}=\frac{y^2}{49}\)
\(=\frac{3x^2}{48}=\frac{4y^2}{196}=100\)
\(\Rightarrow\hept{\begin{cases}x^2=1600\\y^2=4900\end{cases}}\)
TH1:x=40,y=70
TH2:x=40,y=-70
TH3:x=-40,y=70
TH4:x=-40,y=-70