Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 5xy ( x - y ) - 2x + 2y
= 5xy ( x - y ) - 2 ( x - y )
= ( x - y ) ( 5xy - 2 )
b) 6x-2y-x(y-3x)
= 2 ( y - 3x ) - x ( y - 3x )
= ( y - 3x ( ( 2 - x )
c) x2 + 4x - xy-4y
= x ( x + 4 ) - y ( x + 4 )
( x + 4 ) ( x - y )
d) 3xy + 2z - 6y - xz
= ( 3xy - 6y ) + ( 2z - xz )
= 3y ( x - 2 ) + z ( x - 2 )
= ( x - 2 ) ( 3y + z )
a,5xy(x-y)-2x+2y=5xy(x-y)-2(x-y)=(x-y)(5xy-2)
b,6x-2y-x(y-3x)=-2(y-3x)-x(y-3x)=(y-3x)(-2-x)
c,x^2+4x-xy-4y=x(x+4)-y(x+4)=(x+4)(x-y)
d,3xy+2z-6y-xz=(3xy-6y)+(2z-xz)=3y(x-2)+z(2-x)=3y(x-2)-z(x-2)=(x-2)(3y-z)
11)
a,4-9x^2=0
(2-3x)(2+3x)=0
2-3x=0=>x=2/3 hoặc 2+3x=0=>x=-2/3
b,x^2 +x+1/4=0
(x+1/2)^2 =0
x+1/2=0
x=-1/2
c,2x(x-3)+(x-3)=0
(x-3)(2x+1)=0
x-3=0=>x=3 hoặc 2x+1=0=>x=-1/2
d,3x(x-4)-x+4=0
3x(x-4)-(x-4)=0
(x-4)(3x-1)=0
x-4=0=>x=4 hoặc 3x-1=0=>x=1/3
e,x^3-1/9x=0
x(x^2-1/9)=0
x(x+1/3)(x-1/3)=0
x=0 hoặc x+1/3=0=>x=-1/3 hoặc x-1/3=0=>x=1/3
f,(3x-y)^2-(x-y)^2 =0
(3x-y-x+y)(3x-y+x-y)=0
2x(4x-2y)=0
4x(2x-y)=0
x=0hoặc 2x-y=0=>x=y/2
a) \(2x^2-2y^2\)
\(=2\left(x^2-y^2\right)\)
\(=2\left(x-y\right)\left(x+y\right)\)
b) \(x^2-4x+4\)
\(=x^2-2\cdot x\cdot2+2^2\)
\(=\left(x-2\right)^2\)
c) \(x^2+2x+1-y^2\)
\(=\left(x+1\right)^2-y^2\)
\(=\left(x-y+1\right)\left(x+y+1\right)\)
d) \(x^2-4x\)
\(=x\left(x-4\right)\)
e) \(x^2+10x+25\)
\(=x^2+2\cdot x\cdot5+5^2\)
\(=\left(x+5\right)^2\)
g) \(x^2-2xy+y^2-9\)
\(=\left(x-y\right)^2-3^2\)
\(=\left(x-y-3\right)\left(x-y+3\right)\)
h) \(2x^2-2\)
\(=2\left(x^2-1\right)\)
\(=2\left(x-1\right)\left(x+1\right)\)
i) \(5x^2-5xy+9x-9y\)
\(=5x\left(x-y\right)+9\left(x-y\right)\)
\(=\left(x-y\right)\left(5x+9\right)\)
k) \(y^2-4y+4-x^2\)
\(=\left(y-2\right)^2-x^2\)
\(=\left(y-x-2\right)\left(y+x-2\right)\)
l) \(x^2-16\)
\(=x^2-4^2\)
\(=\left(x-4\right)\left(x+4\right)\)
m) \(3x^2-3xy+2x-2y\)
\(=3x\left(x-y\right)+2\left(x-y\right)\)
\(=\left(x-y\right)\left(3x+2\right)\)
o) \(3x^4-6x^3+3x^2\)
\(=3x^2\left(x^2-2x+1\right)\)
\(=3x^2\left(x-1\right)^2\)
a) 2x2 - 2y2
= (2x - 2y)(2x + 2y)
= 4(x - y)(x + y)
b) x2 - 4x + 4
= (x - 2)2
c) x2 + 2x + 1 - y2
= (x + 1)2 - y2
= (x + 1 - y)(x + 1 + y)
d) x2 - 4x
= x(x - 4)
e) x2 +10x + 25
= (x + 5)2
g) x2 - 2xy + y2 - 9
= (x - y)2 - 32
= (x - y - 3)(x - y + 3)
h) 2x2 - 2
= 2(x2 - 1)
= 2(x - 1)(x + 1)
i) 5x2 - 5xy + 9x - 9y
= 5x(x - y) + 9(x- y)
= (5x + 9)(x - y)
k) y2 - 4y + 4 - x2
= (y - 2)2 - x2
= (y - 2 - x)(y - 2 + x)
l) x2 - 16
= x2 - 42
= (x - 4)(x + 4)
m) 3x2 - 3xy + 2x -2y
= 3x(x - y) +2(x-y)
= (3x + 2)(x - y)
o) 3x4 - 6x3 + 3x2
= 3x4 - 3x3 - 3x3 + 3x2
= 3x3(x - 1) - 3x2(x - 1)
= (3x3 - 3x2)(x - 1)
= 3x2(x - 1)(x - 1)
= 3x2.(x - 1)2
\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
\(1,\)
\(x^2-2x-4y^2-4y\)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y-2\right)\)
\(2,\)
\(x^4+2x^3-4x-4\)
\(=\left(x^2-2\right)\left(x^2+2\right)+2x\left(x^2-2\right)\)
\(=\left(x^2-2\right)\left(x^2+2x+2\right)\)
\(3,\)
\(3x^2-3y^2-2\left(x-y\right)^2\)
\(=3\left(x^2-y^2\right)-2\left(x-y\right)^2\)
\(=3\left(x-y\right)\left(x+y\right)-2\left(x-y\right)\)
\(=\left(x-y\right)[3\left(x+y\right)-2\left(x-y\right)]\)
\(=\left(x-y\right)\left(3x+3y-2x+2y\right)\)
\(=\left(x-y\right)\left(x+5y\right)\)
\(4,\)
\(x^2-y^2-2x+2y\)
\(=x^2-y^2-2x+2y\)
\(=\left(x-y\right)\left(x+y\right)-2\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-2\right)\)
\(x^4+1\)
\(=x^4+2x^2+1-2x^2\)
\(=\left(x^2+1\right)^2-\left(x\sqrt{2}\right)^2\)
\(=\left(x^2-x\sqrt{2}+1\right)\left(x^2+x\sqrt{2}+1\right)\)
______
\(4x^4y^4+1\)
\(=4x^4y^4+4x^2y^2+1-4x^2y^2\)
\(=\left(2x^2y^2+1\right)^2-\left(2xy\right)^2\)
\(=\left(2x^2y^2-2xy+1\right)\left(2x^2y^2+2xy+1\right)\)
______
\(x^4+3x^2+4\)
\(=x^4+x^3+2x^2-x^3-x^2-2x+2x^2+2x+4\)
\(=\left(x^4+x^3+2x^2\right)-\left(x^3+x^2+2x\right)+\left(2x^2+2x+4\right)\)
\(=x^2\left(x^2+x+2\right)-x\left(x^2+x+2\right)+2\left(x^2+x+2\right)\)
\(=\left(x^2+x+2\right)\left(x^2-x+2\right)\)
______
\(x^2+3xy+2y^2\)
\(=x^2+xy+2xy+2y^2\)
\(=x\left(x+y\right)+2y\left(x+y\right)\)
\(=\left(x+2y\right)\left(x+y\right)\)