K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2020

\(1,\left|2x-3\right|=x-5\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-5\ge0\\\left[{}\begin{matrix}2x-3=x-5\\2x-3=-x+5\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\text{≥}5\\\left[{}\begin{matrix}x=-2\\x=\frac{8}{3}\end{matrix}\right.\end{matrix}\right.\) (ko thỏa mãn)

=> pt vô nghiệm

\(2,\left|3x+2\right|=x+1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+1\text{≥}0\\\left[{}\begin{matrix}3x+2=x+1\\3x+2=-x-1\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\text{≥}-1\\\left[{}\begin{matrix}x=-\frac{1}{2}\\x=-\frac{3}{4}\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{1}{2}\\x=-\frac{3}{4}\end{matrix}\right.\)

\(3,\left|2x+1\right|=7-x\)

\(\Leftrightarrow\left\{{}\begin{matrix}7-x\text{≥}0\\\left[{}\begin{matrix}2x+1=7-x\\2x+1=x-7\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\text{≥}7\\\left[{}\begin{matrix}x=2\\x=-8\end{matrix}\right.\end{matrix}\right.\) (loại)

=> pt vô nghiệm

\(4,\left|2x-5\right|=x+1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+1\text{≥}0\\\left[{}\begin{matrix}2x-5=x+1\\2x-5=-x-1\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\text{≥}-1\\\left[{}\begin{matrix}x=6\\x=\frac{4}{3}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\frac{4}{3}\end{matrix}\right.\)

\(5,\left|6x-2\right|=3x-4\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x-4\text{≥}0\\\left[{}\begin{matrix}6x-2=3x-4\\6x-2=-3x+4\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\text{≥}\frac{4}{3}\\\left[{}\begin{matrix}x=-\frac{2}{3}\\x=\frac{2}{3}\end{matrix}\right.\end{matrix}\right.\) => pt vô nghiệm

\(6,\left|3x-2\right|=x-2\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2\text{≥}0\\\left[{}\begin{matrix}3x-2=x-2\\3x-2=-x+2\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\text{≥}2\\\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\end{matrix}\right.\) => pt vô nghiệm

\(7,\left|2x+3\right|=1\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+3=1\\2x+3=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2\end{matrix}\right.\)

\(8,\left|2-x\right|=2x-1\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-1\ge0\\\left[{}\begin{matrix}2-x=2x-1\\2-x=-2x+1\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\frac{1}{2}\\\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow x=1\)

\(9,\left|2x-1\right|=x-3\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3\ge0\\\left[{}\begin{matrix}2x-1=x-3\\2x-1=-x+3\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge3\\\left[{}\begin{matrix}x=-2\\x=\frac{4}{3}\end{matrix}\right.\end{matrix}\right.\) => pt vô nghiệm

\(10,2\left|x-1\right|=x+2\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+2\ge0\\\left[{}\begin{matrix}2x-2=x+2\\2x-2=-x-2\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\\left[{}\begin{matrix}x=4\\x=0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=0\end{matrix}\right.\)

1. \(x^3-x^2+12x\sqrt{x-1}+20=0\) 2. \(x^3+\sqrt{\left(x-1\right)^3}=9x+8\) 3. \(\sqrt{2x^2+x+1}+\sqrt{x^2-x+1}=3x\) 4. \(x^6+\left(x^3-3\right)^3=3x^5-9x^2-1\) 5. \(x^2-6\left(x+3\right)\sqrt{x+1}+14x+3\sqrt{x+1}+13=0\) 6. \(x^2-4x+\left(x-3\right)\sqrt{x^2-x+1}=-1\) 7. \(\sqrt{2x-1}+\sqrt{5-x}=x-2+2\sqrt{-2x^2+11x-5}\) 8. \(\sqrt{5x+11}-\sqrt{6-x}+5x^2-14x-60=0\) 9. \(x^2+6x+8=3\sqrt{x+2}\) 10. \(2x^2+3x-2=\left(2x-1\right)\sqrt{2x^2+x-3}\) 11. ...
Đọc tiếp

1. \(x^3-x^2+12x\sqrt{x-1}+20=0\)

2. \(x^3+\sqrt{\left(x-1\right)^3}=9x+8\)

3. \(\sqrt{2x^2+x+1}+\sqrt{x^2-x+1}=3x\)

4. \(x^6+\left(x^3-3\right)^3=3x^5-9x^2-1\)

5. \(x^2-6\left(x+3\right)\sqrt{x+1}+14x+3\sqrt{x+1}+13=0\)

6. \(x^2-4x+\left(x-3\right)\sqrt{x^2-x+1}=-1\)

7. \(\sqrt{2x-1}+\sqrt{5-x}=x-2+2\sqrt{-2x^2+11x-5}\)

8. \(\sqrt{5x+11}-\sqrt{6-x}+5x^2-14x-60=0\)

9. \(x^2+6x+8=3\sqrt{x+2}\)

10. \(2x^2+3x-2=\left(2x-1\right)\sqrt{2x^2+x-3}\)

11. \(\sqrt{x+1}+\sqrt{4-x}-\sqrt{\left(x+1\right)\left(4-x\right)}=1\)

12. \(x^2-\sqrt{x^2-4x}=4\left(x+3\right)\)

13. \(x^2-x-4=2\sqrt{x-1}\left(1-x\right)\)

14. \(\frac{1}{\sqrt{x}+1}+\frac{1}{\sqrt{x}-1}=1\)

15. \(\sqrt{2x^2+3x+2}+\sqrt{4x^2+6x+21}=11\)

16. \(\sqrt{x+3+3\sqrt{2x-3}}+\sqrt{x-1+\sqrt{2x-1}}=2\sqrt{2}\)

17. \(\left(x-2\right)^2\left(x-1\right)\left(x-3\right)=12\)

18. \(2x^2+\sqrt{x^2-2x-19}=4x+74\)

19. \(x^4+x^2-20=0\)

20. \(x+\sqrt{4-x^2}=2+3x\sqrt{4-x^2}\)

21. \(\left(x^2+x+1\right)\left(\sqrt[3]{\left(3x-2\right)^2}+\sqrt[3]{3x-2}+1\right)=9\)

22. \(\sqrt{x^2-3x+5}+x^2=3x+7\)

23. \(x^2+6x+5=\sqrt{x+7}\)

24. \(\frac{2x^2-3x+10}{x+2}=3\sqrt{\frac{x^2-2x+4}{x+2}}\)

25. \(5\sqrt{x-1}-\sqrt{x+7}=3x-4\)

26. \(2\left(x^2+2\right)=5\sqrt{x^3+1}\)

27. \(\sqrt{x-1}+\sqrt{5-x}-2=2\sqrt{\left(x-1\right)\left(5-x\right)}\)

28. \(x^2+\frac{9x^2}{\left(x-3\right)^2}=40\)

29. \(\frac{26x+5}{\sqrt{x^2+30}}+2\sqrt{26x+5}=3\sqrt{x^2+30}\)

30. \(\frac{\sqrt{27+x^2+x}}{2+\sqrt{5-\left(x^2+x\right)}}=\frac{\sqrt{27+2x}}{2+\sqrt{5-2x}}\)

12
20 tháng 3 2020

28. \(x^2+\frac{9x^2}{\left(x-3\right)^2}=40\) DK: \(x\ne3\)

PT\(\Leftrightarrow\left(x+\frac{3x}{x-3}\right)^2-6\frac{x^2}{x-3}-40=0\)\(\Leftrightarrow\frac{x^4}{\left(x-3\right)^2}-6\frac{x^2}{x-3}-40=0\)

Dat \(\frac{x^2}{x-3}=a\). PTTT \(a^2-6a-40=0\)\(\Leftrightarrow\left(a-10\right)\left(a+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=10\\a=-4\end{matrix}\right.\)

giai tiep

20 tháng 3 2020

14. \(\frac{1}{\sqrt{x}+1}+\frac{1}{\sqrt{x}-1}=1\) DK: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

PT\(\Leftrightarrow\frac{\sqrt{x}-1+\sqrt{x}+1}{x-1}=1\Leftrightarrow2\sqrt{x}=x-1\)\(\Leftrightarrow x-2\sqrt{x}+1=2\Leftrightarrow\left(\sqrt{x}-1\right)^2=2\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3+2\sqrt{2}\\x=3-2\sqrt{2}\end{matrix}\right.\)

NV
27 tháng 10 2019

a/ ĐKXĐ: ...

\(\Leftrightarrow3\left(\sqrt{x}+\frac{1}{2\sqrt{x}}\right)=2\left(x+\frac{1}{4x}\right)-7\)

Đặt \(\sqrt{x}+\frac{1}{2\sqrt{x}}=a>0\Rightarrow a^2=x+\frac{1}{4x}+1\)

\(\Rightarrow x+\frac{1}{4x}=a^2-1\)

Pt trở thành:

\(3a=2\left(a^2-1\right)-7\)

\(\Leftrightarrow2a^2-3a-9=9\Rightarrow\left[{}\begin{matrix}a=3\\a=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x}+\frac{1}{2\sqrt{x}}=3\)

\(\Leftrightarrow2x-6\sqrt{x}+1=0\)

\(\Rightarrow\sqrt{x}=\frac{3+\sqrt{7}}{2}\Rightarrow x=\frac{8+3\sqrt{7}}{2}\)

b/ ĐKXĐ:

\(\Leftrightarrow5\left(\sqrt{x}+\frac{1}{2\sqrt{x}}\right)=2\left(x+\frac{1}{4x}\right)+4\)

Đặt \(\sqrt{x}+\frac{1}{2\sqrt{x}}=a>0\Rightarrow x+\frac{1}{4x}=a^2-1\)

\(\Rightarrow5a=2\left(a^2-1\right)+4\Leftrightarrow2a^2-5a+2=0\)

\(\Rightarrow\left[{}\begin{matrix}a=2\\a=\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt{x}+\frac{1}{2\sqrt{x}}=2\\\sqrt{x}+\frac{1}{2\sqrt{x}}=\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x-4\sqrt{x}+1=0\\2x-\sqrt{x}+1=0\left(vn\right)\end{matrix}\right.\)

NV
27 tháng 10 2019

c/ ĐKXĐ: ...

\(\Leftrightarrow\sqrt{2x^2+8x+5}-4\sqrt{x}+\sqrt{2x^2-4x+5}-2\sqrt{x}=0\)

\(\Leftrightarrow\frac{2x^2-8x+5}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\frac{2x^2-8x+5}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)

\(\Leftrightarrow\left(2x^2-8x+5\right)\left(\frac{1}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\frac{1}{\sqrt{2x^2-4x+5}+2\sqrt{x}}\right)=0\)

\(\Leftrightarrow2x^2-8x+5=0\)

d/ ĐKXĐ: ...

\(\Leftrightarrow x+1-\frac{15}{6}\sqrt{x}+\sqrt{x^2-4x+1}-\frac{1}{2}\sqrt{x}=0\)

\(\Leftrightarrow\frac{x^2-\frac{17}{4}x+1}{\left(x+1\right)^2+\frac{15}{6}\sqrt{x}}+\frac{x^2-\frac{17}{4}x+1}{\sqrt{x^2-4x+1}+\frac{1}{2}\sqrt{x}}=0\)

\(\Leftrightarrow\left(x^2-\frac{17}{4}x+1\right)\left(\frac{1}{\left(x+1\right)^2+\frac{15}{6}\sqrt{x}}+\frac{1}{\sqrt{x^2-4x+1}+\frac{1}{2}\sqrt{x}}\right)=0\)

\(\Leftrightarrow x^2-\frac{17}{4}x+1=0\)

\(\Leftrightarrow4x^2-17x+4=0\)

15 tháng 4 2020

Đây là lớp 8 nha các b giúp mk với

Do mk viết nhầm