K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2020

\(x^2-4x\sqrt{3}+12=0\Leftrightarrow x^2-2\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2=0\)\(\Leftrightarrow\left(x-2\sqrt{3}\right)^2=0\Leftrightarrow x=2\sqrt{3}\)

30 tháng 5 2022

Câu này đề hỏi gì vậy em?

 

30 tháng 5 2022

là rút gọn biểu thức ạ 

19 tháng 2 2021

Tham khảo thanh này để soạn đề chính xác hơn nha :vvv

a) Ta có: \(M=\left(\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\right)\cdot\dfrac{x+3\sqrt{x}}{7-\sqrt{x}}\)

\(=\left(\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{7-\sqrt{x}}\)

\(=\dfrac{x-9-\left(x-2\sqrt{x}+\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{7-\sqrt{x}}\)

\(=\dfrac{x-9-x+\sqrt{x}+2}{\left(\sqrt{x}-2\right)}\cdot\dfrac{1}{-\left(\sqrt{x}-7\right)}\)

\(=\dfrac{\sqrt{x}-7}{\sqrt{x}-2}\cdot\dfrac{-1}{\sqrt{x}-7}\)

\(=\dfrac{-1}{\sqrt{x}-2}\)(1)

b) Ta có: \(x^2-4x=0\)

\(\Leftrightarrow x\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=4\left(loại\right)\end{matrix}\right.\)

Thay x=0 vào biểu thức (1), ta được:

\(M=\dfrac{-1}{\sqrt{0}-2}=\dfrac{-1}{-2}=\dfrac{1}{2}\)

Vậy: Khi \(x^2-4x=0\) thì \(M=\dfrac{1}{2}\)

18 tháng 6 2019

Tải app giải toán và kết bạn trao đổi nào cả nhà: https://www.facebook.com/watch/?v=485078328966618

18 tháng 6 2019

Tải app giải toán và kết bạn trao đổi nào cả nhà: https://www.facebook.com/watch/?v=485078328966618

13 tháng 5 2016

\(x^2-2\sqrt{3}\cdot x+2=0\)

dịch ra cho mọi người dễ làm thôi mình không biết làm mong bạn sớm có câu trả lời nhanh và đúng nhất

13 tháng 5 2016

Ta có: \(x^2-2\sqrt{3}x+2=0\)

<=> \(x^2-2\sqrt{3}x+3-1=0\)

<=> \(\left(x-\sqrt{3}\right)^2=1\)

<=> \(\left|x-\sqrt{3}\right|=1\)

<=> \(x-\sqrt{3}=1;x-\sqrt{3}=-1\)

<=> \(x=1+\sqrt{3};x=\sqrt{3}-1\)