K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2017

Bn clivk vào câu hỏi tương tự ý

27 tháng 6 2017

Đặt tính chia tìm thương và dư của f(x) cho g(x) ta được:

\(f\left(x\right)=g\left(x\right)\cdot\left(6x^2-x+a-6b-1\right)+\left[\left(a-5b+2\right)+\left(6b^2+b-ab+2\right)\right]\)

Vậy để f(x) chia hết cho g(x) thì dư phải bằng 0, khi đó:

\(\hept{\begin{cases}a-5b+2=0\\6b^2+b-ab+2=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=5b-2\\6b^2+b-b\left(5b-2\right)+2=0\Rightarrow b^2+3b+2=0\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}b=-1\Rightarrow a=-7\\b=-2\Rightarrow a=-12\end{cases}}\)

Vậy các giá trị cần xác định của a, b để f(x) chia hết cho g(x) là (a;b) = (-7;-1) , (-12;-2)

27 tháng 6 2017

Hay ghê :)

27 tháng 8 2016

 1. f(x)=g(x) (6x2−x+a−6b−1) + (a−5b+2)x + (2+6b2+b−ab) ⇒ f(x)⋮g(x)⇔a−5b+2=2+6b2+b−ab=0 ⇒ (b,a)=(−1;−7) ; (−2;−12) 

14 tháng 8 2019

làm mẫu 1 phần thôi men còn lại tự làm 

giải

a) 

  ax^3+ bx-24 x^2+4x+3 ax-4a ax^3+4ax^2+3ax - -4ax^2+(b-3a)x-24 -4ax^2-16ax-12a - (b-3a+16a)x-(24-12a)

Để \(A\left(x\right)⋮B\left(x\right)\)\(\Leftrightarrow\hept{\begin{cases}b-3a+16a=0\\24-12a=0\end{cases}}\)

                                    \(\Leftrightarrow\hept{\begin{cases}b+13.2=0\\a=2\end{cases}}\)

                                     \(\Leftrightarrow\hept{\begin{cases}b=-26\\a=2\end{cases}}\)

24 tháng 12 2017

cái này chắc dùng đồng nhất rồi