Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong de thi hsg cap Thanh pho Ha Noi 2016-2017 co dap an do ban
Tham khảo tại đây:
Câu hỏi của Hồ Minh Phi - Toán lớp 9 | Học trực tuyến
hình như bài này có trong đề thi hsg toán 9 tp ha nôi 2016 hay sao ý ^.^
MAx
ó thể thấy rằng:
xy + yz + 2zx = y(x + z) + 2zx <= lyllx + zl + 2zx (1).
Lại có lx + zl <= căn[2(x^2 + z^2)] = căn[2(1 - y^2)] và 2zx <= z^2 + x^2 = 1 - y^2; từ đây suy ra
xy + yz + 2zx <= lylcăn[2(1 - y^2)] + 1 - y^2 (2).
Tiếp đến, ta sẽ chứng minh lylcăn(2(1 - y^2)] + 1 - y^2 <= căn(3)/2 + 1/2 (3), từ đó suy ra kết quả của bài toán. Thật vậy, ta có
lylcăn(2(1 - y^2)] + 1 - y^2 <= căn(3)/2 - 1/2 <=> lylcăn[2(1 - y^2)] <= y^2 + căn(3)/2 - 1/2
<=> 2y^2(1 - y^2) <= y^4 + (căn(3) - 1)y^2 + (căn(3)/2 - 1/2)^2
<=> 3y^4 - (3 - căn(3))y^2 + (căn(3)/2 - 1/2)^2
<=> 3y^4 - 2căn(3)(căn(3)/2 - 1/2)y^2 + (căn(3)/2 - 1/2)^2
<=> (căn(3)y^2 - căn(3)/2 + 1/2)^2 >= 0.
Đẳng thức xảy ra khi y = căn[1/2 - 1/2căn(3)] hoặc y = -căn[1/2 - 1/2căn(3)].
Từ (1),(2),(3) suy ra
xy + yz + 2zx <= căn(3)/2 + 1/2.
Dấu = xảy ra khi dấu = của (1),(2),(3) cùng xảy ra, tức là x = z = (1/2)căn[(1 + căn(3))/căn(3)] và y = căn[1/2 - 1/2căn(3)], hoặc x = z = (-1/2)căn[(1 + căn(3))/căn(3)] và y = -căn[1/2 - 1/2căn(3)].
solution:
ta có: \(3=x^2+y^2+z^2\ge3\sqrt[3]{x^2y^2z^2}\Leftrightarrow xyz\le1\)(theo BĐT cauchy cho 3 số )
\(\Rightarrow xy\le\dfrac{1}{z};yz\le\dfrac{1}{x};xz\le\dfrac{1}{y}\)
\(\Rightarrow\dfrac{x}{\sqrt[3]{yz}}\ge\dfrac{x}{\dfrac{1}{\sqrt[3]{x}}}=x\sqrt[3]{x}=\sqrt[3]{x^4}\)
tương tự ta có:\(\dfrac{y}{\sqrt[3]{xz}}\ge\sqrt[3]{y^4};\dfrac{z}{\sqrt[3]{xy}}\ge\sqrt[3]{z^4}\)
cả 2 vế các BĐT đều dương,cộng vế với vế:
\(S=\dfrac{x}{\sqrt[3]{yz}}+\dfrac{y}{\sqrt[3]{xz}}+\dfrac{z}{\sqrt[3]{xy}}\ge\sqrt[3]{x^4}+\sqrt[3]{y^4}+\sqrt[3]{z^4}\)
Áp dụng BĐT bunyakovsky ta có:
\(\left(\sqrt[3]{x^4}+\sqrt[3]{y^4}+\sqrt[3]{z^4}\right)\left(x^2+y^2+z^2\right)\ge\left(\sqrt[3]{x^8}+\sqrt[3]{y^8}+\sqrt[3]{z^8}\right)^2=\left(x^2+y^2+z^2\right)^2\)
\(\Rightarrow S\ge x^2+y^2+z^2\)
đến đây ta lại có BĐT quen thuộc: \(x^2+y^2+z^2\ge xy+yz+xz\)
\(\Rightarrow S\ge xy+yz+xz\left(đpcm\right)\)
dấu = xảy ra khi và chỉ khi x=y=z mà x2+y2+z2=3 => x=y=z=1
*cách khác : Áp dụng BĐT cauchy - schwarz(bunyakovsky):
\(S=\dfrac{x}{\sqrt[3]{yz}}+\dfrac{y}{\sqrt[3]{xz}}+\dfrac{z}{\sqrt[3]{xy}}=\dfrac{x^4}{x^3.\dfrac{1}{\sqrt[3]{x}}}+\dfrac{y^4}{y^3.\dfrac{1}{\sqrt[3]{y}}}+\dfrac{z^4}{z^3.\dfrac{1}{\sqrt[3]{z}}}\)
\(S\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2}=x^2+y^2+z^2\ge xy+yz+xz\)
Ta có bất đẳng thức phụ: \(xy+yz+xz\le x^2+y^2+z^2\)
\(\Rightarrow xy+yz+xz\le x^2+y^2+z^2\le3\)
Áp dụng bất đẳng thức Cauchy-Schwarz:
\(P=\dfrac{1}{1+xy}+\dfrac{1}{1+xz}+\dfrac{1}{1+yz}\ge\dfrac{\left(1+1+1\right)^2}{1+xy+1+xz+1+yz}\ge\dfrac{\left(1+1+1\right)^2}{1+1+1+3}=\dfrac{9}{6}=\dfrac{3}{2}\)
Dấu "=" xảy ra khi: \(x=y=z=1\)