K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2020

\(A=\frac{3x+4}{x^2+1}=-\frac{\left(3x-1\right)^2}{x^2+1}+\frac{9}{2}\le\frac{9}{2}\)

\(A=\frac{3x+4}{x^2+1}=\frac{\left(x+3\right)^2}{x^2+1}-\frac{1}{2}\ge\frac{1}{2}\)

23 tháng 4 2019

\(\Leftrightarrow Qx^2+Q=10x^2+8x+4\)

\(\Leftrightarrow x^2\left(Q-10\right)-8x+Q-4=0\)(1)

*Neu Q = 10 thi x = ... (ban tu tinh nha)

*Neu Q # 10 thi pt (1) co nghiem khi va chi khi Delta' > 

Ta co \(\Delta'\ge0\)

\(\Leftrightarrow16-\left(Q-10\right)\left(Q-4\right)\ge0\)

\(\Leftrightarrow16-Q^2+14Q-40\ge0\)

\(\Leftrightarrow-Q^2+14Q-24\ge0\)

\(\Leftrightarrow2\le Q\le12\)

Ban tu tim dau "=" nha

14 tháng 10 2019

dk 3x+2 

P= \(\frac{x\left(3x-1\right)}{3x+2}.\frac{3x+2}{\left(3x-1\right)x^2+4\left(3x-1\right)}=\frac{x\left(3x-1\right)}{3x+2}.\frac{3x+2}{\left(3x-1\right)\left(x^2+4\right)}=\)\(\frac{x}{x^2+4}\)

dk \(\hept{\begin{cases}3x-1\ne0\\3x+2\ne0\end{cases}< =>\hept{\begin{cases}x\ne\frac{1}{3}\\x\ne\frac{-2}{3}\end{cases}}}\)(1)

P(x2+4) = x <=> Px2-x+4P=0

để phương trình trên có nghiệm thỏa mãn (1) <=> \(\hept{\begin{cases}P\frac{1}{3^2}-\frac{1}{3}+4P\ne0\\P\frac{4}{9}+\frac{2}{3}+4P\ne0\\1^2-4.P.\left(4P\right)\ge0\end{cases}< =>\hept{\begin{cases}P\ne\frac{3}{37}\\P\ne\frac{-3}{20}\\\frac{-1}{4}\le P\le\frac{1}{4}\end{cases}}}\)

Vậy P max = 1/4 khi \(\frac{1}{4}x^2-x+1=0< =>x=2\)

P min = -1/4 khi \(\frac{-1}{4}x^2-x-1=0< =>x=-2\)

21 tháng 5 2015

1.  x≥1 <=> \(\frac{1}{x}\le1\Leftrightarrow\frac{1}{x}+1\le2\Leftrightarrow A\le2\Rightarrow MaxA=2\Leftrightarrow x=1\)

2. Áp dụng bđt cosi cho x>0. ta có: \(x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}=2\Leftrightarrow P\ge2\Rightarrow MinP=2\Leftrightarrow x=\frac{1}{x}\Leftrightarrow x=1\)

 

21 tháng 5 2015

3: \(A=\frac{x^2+x+4}{x+1}=\frac{\left(x^2+2x+1\right)-\left(x+1\right)+4}{x+1}=x+1-1+\frac{4}{x+1}\)

áp dụng cosi cho 2 số dương ta có: \(x+1+\frac{4}{x+1}\ge2\sqrt{x+1.\frac{4}{x+1}}=2\Leftrightarrow A+1\ge2\Rightarrow A\ge3\Rightarrow MinA=3\Leftrightarrow x+1=\frac{4}{x+1}\Leftrightarrow x=1\)

14 tháng 6 2019

\(\frac{b\left(2a-b\right)}{a\left(b+c\right)}+\frac{c\left(2b-c\right)}{b\left(c+a\right)}+\frac{a\left(2c-a\right)}{c\left(a+b\right)}\le\frac{3}{2}\)

\(\Leftrightarrow\left[2-\frac{b\left(2a-b\right)}{a\left(b+c\right)}\right]+\left[2-\frac{c\left(2b-c\right)}{b\left(c+a\right)}\right]+\left[2-\frac{a\left(2c-a\right)}{c\left(a+b\right)}\right]\ge\frac{9}{2}\)

\(\Leftrightarrow\frac{b^2+2ca}{a\left(b+c\right)}+\frac{c^2+2ab}{b\left(c+a\right)}+\frac{a^2+2bc}{c\left(a+b\right)}\ge\frac{9}{2}\)

Áp dụng BĐT Schwarz, ta có :

\(\frac{b^2}{a\left(b+c\right)}+\frac{c^2}{b\left(c+a\right)}+\frac{a^2}{c\left(a+b\right)}\ge\frac{\left(a+b+c\right)^2}{a\left(b+c\right)+b\left(c+a\right)+c\left(a+b\right)}=\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ac\right)}\)( 1 )

\(\frac{ac}{a\left(b+c\right)}+\frac{ab}{b\left(c+a\right)}+\frac{bc}{c\left(a+b\right)}=\frac{c^2}{c\left(b+c\right)}+\frac{a^2}{a\left(a+c\right)}+\frac{b^2}{b\left(a+b\right)}\)           ( 2 )

\(\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+ab+bc+ac}\)

Cộng ( 1 ) với ( 2 ), ta được :

\(\frac{b^2+2ca}{a\left(b+c\right)}+\frac{c^2+2ab}{b\left(c+a\right)}+\frac{a^2+2bc}{c\left(a+b\right)}\)

\(\ge\left(a+b+c\right)^2\left(\frac{1}{2\left(ab+bc+ac\right)}+\frac{2}{a^2+b^2+c^2+ab+bc+ac}\right)\)

\(\ge\left(a+b+c\right)^2\left(\frac{\left(1+2\right)^2}{2\left(ab+bc+ac\right)+2\left(a^2+b^2+c^2+ab+bc+ac\right)}\right)=\frac{9}{2}\)

14 tháng 6 2019

không biết cách này ổn không 

Ta có : \(\frac{b\left(2a-b\right)}{a\left(b+c\right)}=\frac{2-\frac{b}{a}}{\frac{c}{b}+1}\) ; tương tự :...

đặt \(\frac{a}{c}=x;\frac{b}{a}=y;\frac{c}{b}=z\Rightarrow xyz=1\)

\(\Sigma\frac{2-y}{z+1}\le\frac{3}{2}\)          

\(\Leftrightarrow2\Sigma xy^2+2\Sigma x^2+\Sigma xy\ge3\Sigma x+6\)( quy đồng khử mẫu )

\(\Leftrightarrow\Sigma\frac{x}{y}\ge\Sigma x\)( xyz = 1 )           ( luôn đúng )

\(\Rightarrowđpcm\)

10 tháng 7 2018

1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4 
--> Pmin=4 khi x=4

4 tháng 5 2021

2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1

=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6

<=> M=2t2+t-4\(\ge\)2.12+1-4=-1

Mmin=-1 khi t=1 hay x=2