\(0\le x;y;z\le1\). Tìm tất cả nghiệm của phương trình:

\(...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2018

Hãy tích nếu như bạn thông minh

Ai ko tích là bình thường

Còn ai dis là "..."

5 tháng 5 2020

Ta có : \(\left(x-1\right)\left(y-1\right)\ge0\Rightarrow xy-\left(x+y\right)+1\ge0\)

\(\Rightarrow xy+z+1\ge x+y+z\Rightarrow\frac{y}{xy+z+1}\le\frac{y}{x+y+z}\)

Tương tự : \(\frac{x}{xz+y+1}\le\frac{x}{x+y+z}\)\(\frac{z}{yz+x+1}\le\frac{z}{x+y+z}\)

Cộng lại,ta được :

\(VT\le\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=1\)( 1 )

Mà \(x+y+z\le3\Rightarrow VP=\frac{3}{x+y+z}\ge1\)( 2 )

Dấu "=" xảy ra khi x = y = z = 1

Từ ( 1 ) và ( 2 ) suy ra x = y = z = 1

Vậy ...

NV
4 tháng 9 2020

Do \(0< x;y;z\le1\Rightarrow\left(x-1\right)\left(z-1\right)\ge0\)

\(\Leftrightarrow xz-x-z+1\ge0\)

\(\Leftrightarrow xz+1\ge x+z\Rightarrow1+y+xz\ge x+y+z\)

\(\Rightarrow\frac{x}{1+y+xz}\le\frac{x}{x+y+z}\)

Hoàn toàn tương tự: \(\frac{y}{1+z+xy}\le\frac{y}{x+y+z}\) ; \(\frac{z}{1+x+yz}\le\frac{z}{x+y+z}\)

\(\Rightarrow VT\le\frac{x+y+z}{x+y+z}\le\frac{3}{x+y+z}\) (do \(x;y;z\le1\Rightarrow x+y+z\le3\))

Dấu "=" xảy ra khi và chỉ khi \(x=y=z=1\)

20 tháng 7 2020

\(0\le x,y,z\le1\Rightarrow\left(x-1\right)\left(y-1\right)\ge0\Rightarrow xy+1\ge x+y\)

Tương tự:

\(yz+1\ge y+z;zx+1\ge z+x\)

Khi đó

\(LHS\le\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\le\frac{2x}{x+y+z}+\frac{2y}{x+y+z}+\frac{2z}{x+y+z}=2\)

Không chắc nha !

7 tháng 3 2018

Áp dụng BĐT AM-GM ta có: 

\(VT=\sqrt{\frac{xy}{z+xy}}+\sqrt{\frac{xz}{y+xz}}+\sqrt{\frac{yz}{x+yz}}\)

\(=\sqrt{\frac{xy}{z\left(x+y+z\right)+xy}}+\sqrt{\frac{xz}{y\left(x+y+z\right)+xz}}+\sqrt{\frac{yz}{x\left(x+y+z\right)+yz}}\)

\(=\sqrt{\frac{xy}{\left(x+z\right)\left(y+z\right)}}+\sqrt{\frac{xz}{\left(x+y\right)\left(y+z\right)}}+\sqrt{\frac{yz}{\left(x+y\right)\left(x+z\right)}}\)

\(\le\frac{1}{2}\left(\frac{x}{x+z}+\frac{y}{y+z}+\frac{x}{x+y}+\frac{z}{y+z}+\frac{y}{x+y}+\frac{z}{x+z}\right)\)

\(=\frac{1}{2}\left(\frac{x+z}{x+z}+\frac{y+z}{y+z}+\frac{x+y}{x+y}\right)=\frac{3}{2}\)

Dấu "=" <=> \(x=y=z=\frac{1}{3}\)

Ủng hộ và kb với mình ha ^^

6 tháng 3 2018
Từ gt suy ra z=1-x-y Thầy vào sau đó áp dụng AM-GM
13 tháng 7 2020

\(P=\frac{1}{x^2+y^2+z^2}+\frac{1}{xy+yz+zx}=\frac{1}{x^2+y^2+z^2}+\frac{2}{2xy+2yz+2xz}\)

Theo Bất đẳng thức Cauchy Schwarz dạng Engel ta được :

\(\frac{1}{x^2+y^2+z^2}+\frac{\sqrt{2}^2}{2xy+2yz+2xz}\ge\frac{\left(1+\sqrt{2}\right)^2}{\left(x+y+z\right)^2}\)

\(\ge\frac{1+2\sqrt{2}+2}{1^2}=3+2\sqrt{2}\)

Đẳng thức xảy ra khi và chỉ khi \(\hept{\begin{cases}...\\...\\...\end{cases}}\)

Vậy \(Min_P=3+2\sqrt{2}\)khi và chỉ khi ...

dấu = bạn tự xét nhé :V

13 tháng 7 2020

dấu = xảy ra ko đúng rồi phải

23 tháng 12 2019

Nguyễn Việt Lâm

19 tháng 10 2017

Xem lại cái đề đi Tuyển. Hình như giá trị nhỏ nhất của cái biểu thức dưới còn lớn hơn là 1 thì làm sao bài đó có giá trị x, y, z thỏa được mà bảo tính A.