= thì phương trình
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2017

m thủa mãn hệ:

\(\left\{{}\begin{matrix}\Delta>0\left(1\right)\\P>0\left(2\right)\\s>0\left(3\right)\\x_2=3x_1\left(4\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\Delta'=1-\left(m-1\right)>0\Rightarrow m< 2\)

\(\left(2\right)\Leftrightarrow m-1>0\Rightarrow m>1\)

\(\left(3\right)\Leftrightarrow-\dfrac{-2}{1}>0\forall m\)

\(\left\{{}\begin{matrix}t_2=1-\sqrt{2-m}\\t_1=1+\sqrt{2-m}\end{matrix}\right.\) \(\left(4\right)\Leftrightarrow1+\sqrt{2-m}=9\left(1-\sqrt{2-m}\right)\Rightarrow10\sqrt{2-m}=8\Rightarrow m=\dfrac{34}{25}=1,36\)

Kết luận: \(m=1,36\)

1 tháng 3 2017

nghiệm f(x) đối xứng qua trục tung:

đk có 4 nghiệm: \(\left\{\begin{matrix}\Delta>0\\b< 0\\c>0\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}2-m>0\\m-1>0\end{matrix}\right.\)\(\Rightarrow1< m< 2\)

\(f\left(t\right)=t^2-2t+m-1\)

\(\left\{\begin{matrix}t_1=1-\sqrt{2-m}\\t_2=1+\sqrt{2-m}\end{matrix}\right.\)

để nghiệm cách đều:\(t_1< t_2\Rightarrow\sqrt{t_2}-\sqrt{t_1}=2\sqrt{t_1}\Rightarrow\sqrt{t_2}=3\sqrt{t_1}\)

\(\Leftrightarrow1+\sqrt{2-m}=9-9\sqrt{2-m}\)

\(\Leftrightarrow10\sqrt{2-m}=8\Rightarrow2-m=\dfrac{16}{25}\Rightarrow m=\dfrac{34}{25}\) thoảm mãn đk

Kết luận: \(m=\dfrac{34}{25}\)

13 tháng 3 2016

bằng 1,36

17 tháng 3 2017

Câu 1: 2

Câu 2: 23

Câu 3: -12,75

17 tháng 3 2017

câu 1 : \(x_D-y_D=6\)

Câu 2: \(S_{ABC}=40cm^2\)