Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.A: \(\dfrac{3}{x-1}\)
Để A nhận giá trị nguyên thì 3 chia hết x-1
Suy ra: x-1 thuộc Ư(3) ={1;-1;3;-3}
Ta có bảng sau:
n-1 | -3 | -1 | 3 | 1 |
n | -2 | 0 | 4 | 2 |
Kết luận | Thỏa mãn | Thỏa mãn | Thỏa mãn | Thỏa mãn |
Vậy x thuộc { -2; 0;4 ;2}
a.Để \(A\in Z\) thì \(\left(x-1\right)\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
Ta có:
\(x-1=1\\ x=1+1\\ x=2\\\)
\(x-1=-1\\ x=\left(-1\right)+1\\ x=0\)
\(x-1=3\\ x=3+1\\ x=4\)
\(x-1=-3\\ x=\left(-3\right)+1\\ x=-2\)
Vậy, để \(A\in Z\) thì \(x\in\left\{2;0;4;-2\right\}\)
Để A có giá trị nguyên
thì 3\(⋮\)(x-1)
mà xeZ nên x-1eZ
x-1e{3;-3}
xe{4;-2}
a) Để \(A\in Z\) thì \(3⋮n-1\)
\(\Rightarrow n-1\in U\left(3\right)\)
Bảng:
n-1 | -1 | -3 | 1 | 3 |
n |
0 |
-2 | 2 | 4 |
Vậy...........
b) Để \(B\in Z\) thì \(x-2⋮x+3\)
\(\Rightarrow x+3-5⋮x+3\)
\(\Rightarrow-5⋮x+3\)
Bảng:
x+3 | -1 | 5 | 1 | -5 |
x | -4 | 2 | -2 | -8 |
Vậy...........
3. Gọi d là ƯCLN(2n + 3, 4n + 8), d ∈ N*
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}}\)
\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d\in\left\{1;2\right\}\)
Mà 2n + 3 không chia hết cho 2
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(2n+3,4n+8\right)=1\)
\(\Rightarrow\frac{2n+3}{4n+8}\) là phân số tối giản.
a: =>5x=3x-6
=>2x=-6
hay x=-3
b: \(\Leftrightarrow\left(x-3\right)^2=4\cdot5^2=100\)
=>x-3=10 hoặc x-3=-10
=>x=13 hoặc x=-7
c: \(\left|x^3+1\right|+2\ge2\forall x\)
Dấu '=' xảy ra khi x=-1
A=\(\dfrac{3}{x-1}\)
Để \(\dfrac{3}{x-1}\) có giá trị nguyên thì
3\(⋮x-1\)
=> x-1\(\in\)Ư(3)=\(\left\{\pm3;\pm1\right\}\)
Ta có bảng sau:
=> x\(\in\left\{4;\pm2;0\right\}\) (thỏa mãn x\(\in Z\))
Vậy để \(\dfrac{3}{x-1}\) có giá trị nguyên thì x\(\in\left\{4;\pm2;0\right\}\)
B=\(\dfrac{x-2}{x+3}\)
Để \(\dfrac{x-2}{x+3}\) có giá trị là số nguyên thì
\(x-2⋮x+3\)
<=> \(x+3-5⋮x+3\)
<=> -5\(⋮\)x+3
=> x+3\(\in\)Ư(-5)=\(\left\{\pm1;\pm5\right\}\)
Ta có bảng sau:
=> x\(\in\left\{\pm2;-4;-8\right\}\) (thỏa mãn x\(\in Z\))
Vậy để\(\dfrac{x-2}{x+3}\) có giá trị nguyên thì x\(\in\left\{\pm2;-4;-8\right\}\)
C=\(\dfrac{2x+1}{x-3}\)
Để \(\dfrac{2x+1}{x-3}\) có giá trị là số nguyên thì
\(2x+1⋮x-3\)
<=> (x-3)+(x-3)+7\(⋮\)x-3
<=> 2(x-3)+7\(⋮\)x-3
<=> 7\(⋮x-3\)
=> x-3\(\inƯ_{\left(7\right)}=\left\{\pm1;\pm7\right\}\)
Ta có bảng sau:
=> x\(\in\left\{\pm4;2;10\right\}\) (thỏa mãn x\(\in Z\))
Vậy để \(\dfrac{2x+1}{x-3}\) có giá trị là số nguyên thì x\(\in\left\{\pm4;2;10\right\}\)
D=\(\dfrac{x^2-1}{x+1}\)
Áp dụng hằng đẳng thức ta có:
\(\dfrac{x^2-1}{x+1}\) =\(\dfrac{\left(x-1\right)\left(x+1\right)}{x+1}\)= x-1
=> để x-1 có giá trị nguyên thì x\(\in Z\)
hay để \(\dfrac{x^2-1}{x+1}\) có giá trị nguyên thì x\(\in Z\)
Vậy để \(\dfrac{x^2-1}{x+1}\)có giá trị nguyên thì \(x\in Z\)