Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\)Để \(\sqrt{-3x}\)có nghĩa \(\Leftrightarrow-3x\ge0\Rightarrow x\le0\)
\(b,\)Để \(\sqrt{4-2x}\)có nghĩa \(\Leftrightarrow4-2x\ge0\Rightarrow-2\left(x-2\right)\ge0\Rightarrow x-2\le0\Leftrightarrow x\le2\)
\(c,\)Để \(\sqrt{-3x+2}\)có nghĩa \(\Leftrightarrow-3x+2\ge0\Rightarrow-3x\ge-2\Leftrightarrow x\le\frac{2}{3}\)
\(d,\)Để \(\sqrt{3x+1}\)có nghĩa \(\Leftrightarrow3x+1\ge0\Rightarrow3x\ge-1\Rightarrow x\ge-\frac{1}{3}\)
\(e,\)Để \(\sqrt{9x-2}\)có nghĩa \(\Leftrightarrow9x-2\ge0\Rightarrow9x\ge2\Rightarrow x\ge\frac{2}{9}\)
\(f,\)Để \(\sqrt{6x-1}\)có nghĩa \(\Leftrightarrow6x-1\ge0\Rightarrow6x\ge1\Rightarrow x\ge\frac{1}{6}\)
a) \(x\le0\)
\(b)2x\le4\Leftrightarrow x\le2\)
\(c)-3x\ge-2\Leftrightarrow x\le\frac{2}{3}\)
..........
a) \(\sqrt{x^2-8x+18}=\sqrt{\left(x-4\right)^2+2}\)
Ta có:\(\left(x-4\right)^2\ge0\Rightarrow\left(x-4\right)^2+2\ge0\)
Vậy biểu thức \(\sqrt{x^2-8x+18}\)thỏa mãn với mọi x.
b) Để \(\sqrt{3x-2}+\sqrt{3-2x}\)có nghĩa thì \(\hept{\begin{cases}3x-2>0\\3-2x>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>\frac{2}{3}\\x< \frac{3}{2}\end{cases}}\Leftrightarrow\frac{2}{3}< x< \frac{3}{2}\)
Vậy \(ĐKXĐ:\frac{2}{3}< x< \frac{3}{2}\)
c) Để \(\frac{3x+4}{x-2}\)có nghĩa thì \(x\ne2\)
Để \(\sqrt{\frac{3x+4}{x-2}}\)thì 3x + 4 và x - 2 hoặc cùng dương hoặc cùng âm hoặc 3x + 4 = 0
\(TH1:3x+4=0\Leftrightarrow x=\frac{-4}{3}\)
\(TH2:\hept{\begin{cases}3x+4>0\\x-2>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>\frac{-4}{3}\\x>2\end{cases}}\Leftrightarrow x>2\)
\(TH3:\hept{\begin{cases}3x+4< 0\\x-2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< \frac{-4}{3}\\x< 2\end{cases}}\Leftrightarrow x< \frac{-4}{3}\)
Câu b) Để \(\sqrt{3x-2}+\sqrt{3-2x}\)có nghĩa thì \(\hept{\begin{cases}3x-2\ge0\\3-2x\ge0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge\frac{2}{3}\\x\le\frac{3}{2}\end{cases}}\)
Vậy \(ĐKXĐ:\frac{2}{3}\le x\le\frac{3}{2}\)
a=, \(\sqrt{x^2-2.4x+16+2}\)= \(\sqrt{\left(x-4\right)^2+2}\)\(\ge\)0 \(\forall\)x
vậy với mọi gtri của x thì căn luôn có nghĩa
b,= 2\(\sqrt{3x-2}\)
để biểu thức có nghĩa thì 3x - 2 \(\ge\)0
x \(\ge\)2/3
c,để biểu thức có nghĩa thì \(\orbr{\begin{cases}\hept{\begin{cases}3x+4\ge0\\x-2>0\end{cases}}\\\hept{\begin{cases}3x+4\le0\\x-2< 0\end{cases}}\end{cases}}\)
\(\orbr{\begin{cases}\hept{\begin{cases}3x+4\ge0\\x-2>0\end{cases}}\\\hept{\begin{cases}3x+4\le0\\x-2< 0\end{cases}}\end{cases}}\)\(\hept{\begin{cases}3x+4\ge0\\x-2>0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x\ge-\frac{4}{3}\\x>2\end{cases}}\)\(\Rightarrow\)x>2 (1)
hoặc \(\hept{\begin{cases}3x+4\le0\\x-2< 0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x\le-\frac{4}{3}\\x< 2\end{cases}}\)\(\Rightarrow\)x \(\le\)-4/3 (2)
vậy với x > 2 hoặc x \(\le\)-4/3 thì căn có nghĩa
#mã mã#
\(a,x^2+1\ge0+1=1\Rightarrow\sqrt{x^2+1}\text{co nghia}\forall x\)
\(b,4x^2+3\ge4.0+3=3\Rightarrow\sqrt{4x^2+3}\text{co nghia}\forall x\)
\(c,9x^2-6x+1=\left(3x-1\right)^2\ge0\Rightarrow\sqrt{9x^2-6x+1}\text{co nghia }\forall x\)
\(\text{d,taco:}-\left(-x^2+2x-1\right)=\left(x-1\right)^2\ge0\Rightarrow-x^2+2x-1\le0\Rightarrow\sqrt{-x^2+2x-1}\text{co nghia }\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\) \(e,-\left|x+5\right|\le0\forall x\Rightarrow\sqrt{-\left|x+5\right|}\text{co nghia}\Leftrightarrow x+5=0\Leftrightarrow x=-5\)
\(f,-2x^2-1\le0-1=-1\Rightarrow\sqrt{-2x^2-1}\text{ khong co nghia}\)
d)
Ta thấy \(-x^2+2x-1=-(x^2-2x+1)=-(x-1)^2\leq 0, \forall x\in\mathbb{R}\)
Mà để biểu thức có nghĩa thì \(-x^2+2x-1=-(x-1)^2\geq 0\)
Do đó \(-(x-1)^2=0\Leftrightarrow x=1\)
Vậy biểu thức có nghĩa khi $x=1$
e)
\(|x+5|\geq 0, \forall x\in\mathbb{R}\Rightarrow -|x+5|\leq 0, \forall x\in\mathbb{R}\)
Mà để căn thức có nghĩa thì \(-|x+5|\geq 0\)
Do đó \(-|x+5|=0\Leftrightarrow x=-5\) thì căn thức có nghĩa
f)
\(x^2\geq 0, \forall x\in\mathbb{R}\Rightarrow 2x^2+1> 0, \forall x\in\mathbb{R}\)
\(\Rightarrow -2x^2-1=-(2x^2+1)< 0, \forall x\in\mathbb{R}\)
Căn thức có nghĩa khi \(-2x^2-1\ge 0 \) (điều này không thể do cmt)
\(\Rightarrow \) không tồn tại x để căn thức có nghĩa.
a) Để : \(\sqrt{3x-2}\) xác định thì :
3x - 2 ≥ 0 ⇔ x ≥ \(\dfrac{2}{3}\)
KL...........
b) Để : \(\sqrt{4-2x}\) xác định thì :
4 - 2x ≥ 0 ⇔ x ≤ 2
KL.......
c) Để : \(\sqrt{-4x}\) xác định thì :
-4x ≥ 0 ⇔ x ≤ 0
KL.......
d) Để : \(\sqrt{x^2-2x+1}\) xác định thì :
x2 - 2x + 1 ≥ 0 ⇔ ( x - 1)2 ≥ 0 ( luôn đúng ∀x)
KL.........
Còn lại tương tự bạn nhé.
tìm x để căn thức sau có nghĩa
a) \(\sqrt{2x-1}\) có nghĩa khi 2x - 1 \(\ge\) 0 <=> 2x \(\ge\) 1 <=> x \(\ge\) \(\frac{1}{2}\)
Vậy: .......
b) \(\sqrt{4-x}\) có nghĩa khi 4 - x \(\ge\) 0
<=> -x \(\ge\) -4 <=> x \(\le\) 1
Vậy...............
c) \(\sqrt{\frac{3x+1}{2}}\) có nghĩa khi \(\frac{3x+1}{2}\ge0\)
<=> 3x + 1 \(\ge\) 0
<=> x \(\ge\) \(\frac{-1}{3}\)
Vậy.............
d) \(\sqrt{x^2+1}\) có nghĩa khi x2 + 1 \(\ge\) 0
Ta có: x2 \(\ge\) 0 và 1 > 0
=> x2 + 1 > 0 vs mọi x \(\in\) R
Vậy: \(\sqrt{x^2+1}\) có nghĩa vs mọi x \(\in\) R
e) \(\sqrt{x-2}+\frac{1}{x^2-4}\) có nghĩa khi
x - 2 \(\ge\) 0 và x2 - 4 \(\ne\) 0
<=> x \(\ge\) 2 và x \(\ne\) 2 ; -2
<=> x > 2
Vậy..............
f) \(\sqrt{2x-1}+\sqrt{3-x}\) có nghĩa khi 2x - 1\(\ge\) 0 và 3 - x \(\ge\) 0
<=> x \(\ge\) \(\frac{1}{2}\) và x \(\le\) 3
<=> \(\frac{1}{2}\le x\le3\)
Vậy..............
g) \(\sqrt{\frac{3}{x-1}}\) có nghĩa khi x - 1 > 0 <=> x > 1
Vậy...........
h) \(\sqrt{x^2-6x+9}\) có nghĩa khi x2 - 6x + 9 \(\ge\) 0
<=> (x - 3)2 \(\ge\) 0
Mà: (x - 3)2 \(\ge\) 0 vs mọi x \(\in\) R
Vậy..................