Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(\left(10a+b\right)⋮13\Rightarrow10a+b=13k\left(k\in N\right)\)
\(\Rightarrow b=13k-10a\)
\(\Rightarrow a+4b=a+4.\left(13k-10a\right)\)
\(=a+52k-40a\)
\(=52k-39a\)
\(=13\left(4k-3a\right)⋮13\)
Vậy \(\left(10a+b\right)⋮13\Rightarrow\left(a+4b\right)⋮13\)
10a+b\(⋮\)13
=> 4(10a+b)\(⋮\)13
=> 40a+4b\(⋮\)13
=> a+4b+39a\(⋮\)13
Mà 39a\(⋮\)13 nên a+4b\(⋮\)13
Vậy nếu 10a+b\(⋮\)13 thì a+4b\(⋮\)13
+) Chứng minh chiều xuối :
Cho a + 4b ⋮ 13 ; CMR : 10a + b ⋮ 13
Vì a + 4b ⋮ 13 => 10 . ( a + 4b ) ⋮ 13 => 10a + 40b ⋮ 13
Xét hiệu ( 10a + 40b ) - ( 10a + b ) = 39b ⋮ 13
\(\text{Vì }\hept{\begin{cases}10a+40b⋮13\\\left(10a+40b\right)-\left(10a+b\right)⋮13\end{cases}}\)
=> 10a + b ⋮ 13 (1)
+) Chứng minh chiều ngược :
Cho 10a + b ⋮ 13 ; CMR : a + 4b ⋮ 13
Vì 10a + b ⋮ 13 => 4 . ( 10b + a ) ⋮ 13 => 40a + 4b ⋮ 13
Xét hiệu : ( 40a + 4b ) - ( a + 4b ) = 39a ⋮ 13
\(\text{Vì }\hept{\begin{cases}40a + 4b ⋮ 13\\\left(40a+4b\right)-\left(a+4b\right)⋮13\end{cases}}\)
=> a + 4b ⋮ 13 (2)
Từ (1) và (2) => a + 4b ⋮ 13 <=> 10a + b ⋮ 13
10a+b chia hết cho 13
=> 40a +4b-49a chia hết cho 13
hay a+4b chí hết cho 13
Ta có : 13a + 13b chia hết cho 13 và a + 4b chia hết cho 13 => 3a + 12b chia hết cho 13
=> ( 13a + 13b ) - ( 3a + 12b ) chia hết cho 13
=> 10a + b chia hết cho 13
=> đpcm
Ta có:
3 . (a + 4b) + (10a + b) = 3a + 12b + 10a + b = (3a + 10a) + (12b + b) = 13a + 13b = 13 . (a + b) chia hết cho 13.
Mà a + 4b chia hết cho 13 nên 3 . (a + 4b) chia hết cho 13 mà tổng 3 . (a + 4b) + (10a + b) cũng chia hết cho 13
suy ra 10a + b chia hết cho 13
Ta có:
a + 4b chia hết cho 13
=>10.(a + 4b) chia hết cho 13
=>10a+40b chia hết cho 13
Mà 39b chia hết cho 13
=> (10a+40b)-39b chia hết cho 13
=>10a+b chia hết cho 13
Vậy 10a+b chia hết cho 13
a) Giải
Ta có:
a + 5b ⋮ 7 ⇒10(a + 5b) ⋮ 7 ⇒10a + 50b ⋮ 7
Vì 49 ⋮ 7 ⇒49b ⋮ 7
⇒10a + (50b - 49b) ⋮ 7
⇒10a + b ⋮ 7
Vậy 10a + b ⋮ 7