Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ba số hạng tiếp theo lần lượt là: 180; 2260; 214292
Trung bình cộng của dãy số là:
(1 + 2 + 6 + 16 + 44 + 180 + 2260 + 214292) : 8 = 27 100,125
a) 21 ; 34 ; 55
b) 49 ; 64 ; 81
tổng dãy số thứ 1 là: 1+2+3+5+8+13+21+34+55 = 142
tổng dãy số thứ 2 là: 1+4+9+16+25+36+49+64+81 = 285
duyệt đi
Bài 1:
Ta thấy: 1 + 2 = 3 3 + 5 = 8
2 + 3 = 5 5 + 8 = 13
Dãy số trên được lập theo quy luật sau: Kể từ số hạng thứ 3 trở đi mỗi số hạng bằng tổng của hai số hạng đứng liền trước nó.
Ba số hạng tiếp theo là: 21 + 34 = 55; 34 + 55 = 89; 55 + 89 = 144
Vậy dãy số được viết đầy đủ là: 1, 2, 3, 5, 8, 13, 34, 55, 89, 144
Bài 2:
Ta nhận thấy: 8 = 1 + 3 + 4 27 = 4+ 8 + 15
15 = 3 + 4 + 8
Từ đó ta rút ra được quy luật của dãy số là: Mỗi số hạng (kể từ số hạng thứ 4) bằng tổng của ba số hạng đứng liền trước nó.
Viết tiếp ba số hạng, ta được dãy số sau: 1, 3, 4, 8, 15, 27, 50, 92, 169.
Bài 3:
Giải:
a). Ta nhận xét :
Số hạng thứ 10 là : 1024 = 512 x 2
Số hạng thứ 9 là : 512 = 256 x 2
Số hạng thứ 8 là : 256 = 128 x 2
Số hạng thứ 7 là : 128 = 64 x 2
……………………………..
Từ đó ta suy luận ra quy luật của dãy số này là: mỗi số hạng của dãy số gấp đôi số hạng đứng liền trước đó.
Vậy số hạng đầu tiên của dãy là: 1 x 2 = 2.
b). Ta nhận xét :
Số hạng thứ 10 là : 110 = 11 x 10
Số hạng thứ 9 là : 99 = 11 x 9
Số hạng thứ 8 là : 88 = 11 x 8
Số hạng thứ 7 là : 77 = 11 x 7
…………………………..
Từ đó ta suy luận ra quy luật của dãy số là: Mỗi số hạng bằng số thứ tự của số hạng ấy nhân với 11.
Vậy số hạng đầu tiên của dãy là : 1 x 11 = 11.
bài 1:
các số đó là : 55, 89, 144
bài 2 :
đề bài sai, mk nghĩ thế ( mong online math đừng trừ điểm nhé )
bài 3 :
a, nhận xét :
ta thấy : số hạng thứ 10 = 1024 = 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 ( 10 số 2 )
số hạng thứ 9 = 512 = 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 ( 9 số 2 )
tương tự, ta có :
số hạng thứ 8 = 8 số 2 nhân với nhau
số hạng thứ 7 = 7 số 2 nhân với nhau
=> số hạng thứ 1 = 2
b, gọi số hạng đầu tiên là x, ta có :
( 110 - x ) : 11 + 1 = 10 ( theo công thức tìm số số hạng )
110 - x = ( 10 - 1 ) . 11
110 - x = 99
x = 110 - 99
x = 11
vậy số hạng đầu tiên của dãy là 11
kick mk nha
thank you very much
a) Quy luật là mỗi số hạng liên tiếp hơn kém nhau 2 đơn vị.
3 số hạng tiếp theo là : 102 ; 104; 106
b) Số số hạng của dãy là :
( 100 - 2 ) : 2 + 1 = 50 ( số hạng )
~ Ủng hộ nha ~
3 số hạng tiếp của dãy là:
102,104,106
số các số hạng của dãy là:
(100-2):2+1=49 (số hạng)
1. Phương pháp 1: ( Hình 1)
Nếu thì ba điểm A; B; C thẳng hàng.
2. Phương pháp 2: ( Hình 2)
Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.
(Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)
3. Phương pháp 3: ( Hình 3)
Nếu AB a ; AC A thì ba điểm A; B; C thẳng hàng.
( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng
a’ đi qua điểm O và vuông góc với đường thẳng a cho trước
- tiết 3 hình học 7)
Hoặc A; B; C cùng thuộc một đường trung trực của một
đoạn thẳng .(tiết 3- hình 7)
4. Phương pháp 4: ( Hình 4)
Nếu tia OA và tia OB là hai tia phân giác của góc xOy
thì ba điểm O; A; B thẳng hàng.
Cơ sở của phương pháp này là:
Mỗi góc có một và chỉ một tia phân giác .
* Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,
thì ba điểm O, A, B thẳng hàng.
5. Nếu K là trung điểm BD, K’ là giao điểm của BD và AC. Nếu K’
Là trung điểm BD thì K’ K thì A, K, C thẳng hàng.
(Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)
C. Các ví dụ minh họa cho tùng phương pháp:
Phương pháp 1
Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA
(tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm
D sao cho CD = AB.
Chứng minh ba điểm B, M, D thẳng hàng.
Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh
Do nên cần chứng minh
BÀI GIẢI:
AMB và CMD có:
AB = DC (gt).
MA = MC (M là trung điểm AC)
Do đó: AMB = CMD (c.g.c). Suy ra:
Mà (kề bù) nên .
Vậy ba điểm B; M; D thẳng hàng.
Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà AD = AB, trên tia đối
tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED
sao cho CM = EN.
Chứng minh ba điểm M; A; N thẳng hàng.
Gợi ý: Chứng minh từ đó suy ra ba điểm M; A; N thẳng hàng.
BÀI GIẢI (Sơ lược)
ABC = ADE (c.g.c)
ACM = AEN (c.g.c)
Mà (vì ba điểm E; A; C thẳng hàng) nên
Vậy ba điểm M; A; N thẳng hàng (đpcm)
BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1
Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối
của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và
CD.
Chứng minh ba điểm M, A, N thẳng hàng.
Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx BC (tia Cx và điểm A ở
phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia
BC lấy điểm F sao cho BF = BA.
Chứng minh ba điểm E, A, F thẳng hàng.
Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm
E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)
Gọi M là trung điểm HK.
Chứng minh ba điểm D, M, E thẳng hàng.
Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ
Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),
trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.
Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.
Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các
đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.
Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.
PHƯƠNG PHÁP 2
Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên
Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung
điểm BD và N là trung điểm EC.
Chứng minh ba điểm E, A, D thẳng hàng.
Hướng dẫn: Xử dụng phương pháp 2
Ta chứng minh AD // BC và AE // BC.
BÀI GIẢI.
BMC và DMA có:
MC = MA (do M là trung điểm AC)
(hai góc đối đỉnh)
MB = MD (do M là trung điểm BD)
Vậy: BMC = DMA (c.g.c)
Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)
Chứng minh tương tự : BC // AE (2)
Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)
và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng.
Ví dụ 2: Cho hai đoạn thẳng AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia
AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho
D là trung điểm AN.
a) số số hạng của dãy là :
(160 - 16 ) / 2 + 1 = 73 ( số )
Trung bình cộng dãy số trên là :
( ( 160 + 16 ) x 73 : 2 ) : 73 = 88
B) Ta có dãy số đến ssh thứ 10 :
16 ; 18 ; 20 ; 22 ; 24 ; 26 ; 28 ; 30 ; 32 ; 34 ....
=> Số hạng thứ 10 là 34
Phần a mik trình bày đúng còn phần b mik trình bày bừa =) thông kẻm nkaaaa