K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
19 tháng 5 2020

Lời giải:

Tiếp tuyến $(d')$ cần tìm song song với $(d): x+y-3=0$ nên có dạng $x+y+m=0$

Viết lại PTĐTr $(C): (x-1)^2+(y+2)^2=8$

$\Rightarrow$ tâm $I(1;-2)$ và bán kính $R=2\sqrt{2}$

Vì $(d')$ là tiếp tuyến của $(C)$ nên: \(d(I, d')=R\Leftrightarrow \frac{|x_I+y_I+m|}{\sqrt{1^2+1^2}}=2\sqrt{2}\)

\(\Leftrightarrow |m-1|=4\Rightarrow m=5\) hoặc $m=-3$. TH $m=-3$ loại do trùng với $(d)$

Vậy PTTT cần tìm là $x+y+5=0$