Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.\left(2x-3\right)\left(4x^2+6x+9\right)-\left(2x+3\right)\left(4x^2-6x+9\right)\\ =\left(2x\right)^3-3^3-\left[\left(2x\right)^3+3^3\right]\\ =8x^3-9-\left(8x^3+9\right)\\ =8x^3-9-8x^3-9=-18\)
\(b.\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\\ =x^3+1-\left(x^3-1\right)\\ =x^3+1-x^3+1=2\)
\(c.\left(3x-1\right)\left(3x+1\right)-\left(3x-2\right)^2\\ =9x^2-1-\left(9x^2-12x+4\right)\\ =9x^2-1-9x^2+12x-4\\ =12x-5\)
\(d.\left(2x-3\right)^2-\left(2x+3\right)\left(2x-3\right)\\ =\left(2x-3\right)\cdot\left[\left(2x-3\right)-\left(2x+3\right)\right]\\ =\left(2x-3\right)\cdot\left(2x-3-2x-3\right)\\ =\left(2x-3\right)\cdot\left(-6\right)\\ =-12x\cdot18\)
\(e.\left(3x-4\right)^2-\left(2x+4\right)^2\\ =9x^2-24x+16-\left(4x^2+16x+16\right)\\ =9x^2-24x+16-4x^2-16x-16\\ =5x^2-40x\)
\(f.\left(3x-5\right)^3-\left(3x+5\right)^3\\ =27x^3-135x^2+225x-125-\left(27x^3+135x^2+225x+125\right)\\ =27x^3-135x^2+225x-125-27x^3-135x^2-225x-125\\ =-270x^2-250\)
\(g.\left(2x-1\right)^2-\left(3x-1\right)^2\\ =4x^2-4x+1-\left(9x^2-6x+1\right)\\ =4x^2-4x+1-9x^2+6x-1\\ =-5x^2+2x\)
\(h.\left(x-2y\right)\left(x^2+2xy+4y^2\right)+\left(x^3-6y^3\right)\\ =x^3-8y^3+x^3-6y^3\\ =2x^3-14y^3\)
a) \(\left(2x+1\right)^2+2.\left(2x+1\right)+1=\left(2x+2\right)^2\)
b) \(\left(3x-2y\right)^2+4.\left(3x-2y\right)+4\)
\(=\left(3x-2y\right)^2+2.\left(3x-2y\right).2+2^2\)
\(=\left(3x-2y+2\right)^2\)
đừng sủa lắm , không biết mỏi mồm à
a,\(\left(3x-2y\right)^2-\left(5x+7y\right)^2-14y^2\)
\(=9x^2+4y^2-12xy-25x^2-49y^2-70xy-14y^2\)
\(=-16x^2-59y^2-82xy\)
b,\(-\left(4x-\frac{3}{2}\right)^2+\left(3-2x\right)^2-\frac{1}{4}\)
\(=-16x^2+12x-\frac{9}{4}+9-12x+4x^2-\frac{1}{4}\)
\(=-12x^2-\frac{5}{2}+9=\frac{13}{2}-12x^2\)
c,\(\left(2x+1\right)^2-2\left(2x+1\right).\left(7+3x\right)+\left(7+3x\right)^2\)
\(=\left(2x+1-7-3x\right)^2=\left(-6-x\right)^2=36+12x+x^2\)
d, \(\left(5-3x\right)^2+2\left(5-3x\right)\left(7+3x\right)+\left(7+3x\right)^2\)
\(=\left(5-3x+7+3x\right)^2=12^2=144\)
a, (4x-3)(3x+2)-(6x+1)(2x-5)+1
=12x2-8x-9x+6-12x2+30x-2x+5+1
=11x+12
b, (3x+4)2+(4x-1)2+(2+5x)(2-5x)
=9x2+24x+16+16x2-8x+1+4-25x2
=16x+21
c, (2x+1)(4x22x+1)+(2-3x)(4+6x+9x2)-9
=8x3+1+8-27x3-9
=-19x3
a) \(\left(4x-1\right)^2-\left(3x+2\right)\left(3x-2\right)=\left(7x-1\right)\left(x+2\right)+\left(2x+1\right)^2-\left(4x^2+7\right)\)(1)
\(\Leftrightarrow\left(16x^2-8x+1\right)-\left(9x^2-4\right)=\left(7x^2+14x-x-2\right)+\left(4x^2+4x+1\right)-\left(4x^2+7\right)\)
\(\Leftrightarrow16x^2-8x+1-9x^2+4=7x^2+13x-2+4x^2+4x+1-4x^2-7\)
\(\Leftrightarrow7x^2-8x+5=7x^2+17x-8\)
\(\Leftrightarrow7x^2-8x-7x^2-17x=-8-5\)
\(\Leftrightarrow-25x=-13\)
\(\Leftrightarrow x=\dfrac{13}{25}\)
Vậy tập nghiệm phương trình (1) là \(S=\left\{\dfrac{13}{25}\right\}\)
a) \(\left(3x-4\right)^2+2\left(3x-4\right)\left(2x+4\right)+\left(2x+4\right)^2\)\(=\left(3x-4+2x+4\right)^2=\left(5x\right)^2=25x^2\)
b)\(\left(3x+4\right)^2+\left(7+3x\right)^2-\left(6x+8\right)\left(3x+7\right)\)
\(=\left(3x+4\right)^2-2\left(3x+4\right)\left(7+3x\right)+\left(7+3x\right)^2\)
\(=\left[3x+4-\left(7+3x\right)\right]^2=\left(3x+4-7-3x\right)^2=\left(-3\right)^2=9\)
c)\(\left(2x+1\right)^2+2\left(4x^2-1\right)+\left(2x-1\right)^2\)
\(=\left(2x+1\right)^2+2\left(\left(2x\right)^2-1^2\right)+\left(2x-1\right)^2\)
\(=\left(2x+1\right)^2+2\left(2x+1\right)\left(2x-1\right)+\left(2x-1\right)^2\)
\(=\left(2x+1+2x-1\right)^2=\left(4x\right)^2=14x^2\)
xong rồi đấy,bạn k cho mình nhé