Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)5^26=5^13.2=10^13
10^13x4^13=40^13
b)27^15=(3^3)^15+3^45
9^10=(3^2)^10=3^20
3^20x3^45=3^65
c)5^12=5^3.4=(5^4)^3=625^3
0,125^3.625^3=625,125^3
d)0,375^40=0,375^2.20=(0.375^2)^20=0,750^20
9^20:0,750^20=1.0012^20
k me
3^6 . 9^5
= 3^6. \(^{\left(3^2\right)^5}\)
= 3^6. 3^10
=\(^{3^{6+10}}\)
= 3^16
k nhé ( dấu " ^" là đấu mũ)
\(0,001=\frac{1}{1000}=\frac{1}{10^3}=10^{-3}\)
\(0,0001=\frac{1}{10000}=\frac{1}{10^4}=10^{-4}\)
\(0,00015=\frac{3}{20000}=\frac{3}{2}\times\frac{1}{10000}=\frac{3}{2}\times\frac{1}{10^4}=\frac{3}{2}\times10^{-4}\)
\(5^{-a}=\frac{1}{5^a}\)
\(3,5\times10^{-5}=3,5\times\frac{1}{10^5}\)
\(\left(\frac{2}{3}\right)^{-2}==\frac{1}{\left(\frac{2}{3}\right)^2}=\left(\frac{3}{2}\right)^2\)
\(10^{-3}=\frac{1}{10^3}=\frac{1}{1000}\)
3^x*5^x-1=224
3^x*5^x/5=224
15^x=224*5
15^x=1120
=>ko tồn tại x thỏa mãn đề bài vị 15^x luôn có tận cùng bằng 5 (x khác 0 ) hoặc 1 ( x=0) ma 1120 co tận cùng bằng 0
a) \(\frac{7^3.5^8}{49.25^4}=\frac{7^3.5^8}{7^2.\left(5^2\right)^4}=7.\frac{5^8}{5^8}=7\)
b) \(\frac{3^9.25.5^3}{15.625.3^8}=\frac{3.3^8.5^2.5^3}{3.5.5^4.3^8}=\frac{5^5}{5^5}=1\)
c) Đề hơi sai roi bạn oi
d) \(\left(\frac{2}{5}-\frac{1}{2}\right)^2+\left(\frac{1}{2}+\frac{3}{5}\right)^2=\left(\frac{-1}{10}\right)^2+\left(\frac{11}{10}\right)^2=\frac{1}{100}+\frac{121}{100}=\frac{61}{50}\)
a) 158 x 94
= 158 x ( 32 )4
= 158 x 38
= ( 15 x 3 )8 = 458
b) 49 : 527
= 49 : ( 53 ) 9
= 49 : 1259
= \(\left(\frac{4}{125}\right)^9\)
c) 2010 : 220
= 2010 : ( 22 )10
= 2010 : 410 = ( 20 : 4 ) 10 = 510
d) 275 : ( -7 ) 15
= 275 : [ ( - 7 )3 ]5
= 275 : ( - 21 )5
= \(\left(\frac{27}{-21}\right)^5=\left(\frac{9}{-7}\right)^5\)
Cbht
a)\(\left(\frac{1}{5}\right)^{10}.5^{20}=\left(\frac{1}{5}\right)^{10}.5^{10.2}=\left(\frac{1}{5}\right)^{10}.25^{10}=\left(\frac{1}{5}.5\right)^{10}=1^{10}=1\)
b)\(5^2.3^5.\left(\frac{3}{5}\right)^2=\left(\frac{3}{5}.5\right)^2.3^5=3^2.3^5=3^7\)
c)\(\left(\frac{1}{16}\right)^3:\left(\frac{1}{8}\right)^2=\left(\frac{1}{8}\right)^{2.3}:\left(\frac{1}{8}\right)^2=\left(\frac{1}{8}\right)^{6+2}=\left(\frac{1}{8}\right)^8\)
\(a.\left(\frac{1}{5}\right)^{10}.5^{20}=\left(\frac{1}{5}\right)^{10}.5^{10.2}=\left(\frac{1}{5}\right)^{10}.\left(5^2\right)^{10}=\left(\frac{1}{5}\right)^{10}.25^{10}=\left(\frac{1}{5}.25\right)^{10}=5^{10}.\)
\(b.5^2.3^5.\left(\frac{3}{5}\right)^2=\left[5^2.\left(\frac{3}{5}\right)^2\right].3^5=\left(5.\frac{3}{5}\right)^2.3^5=3^2.3^5=3^7\)\(c.\left(\frac{1}{16}\right)^3:\left(\frac{1}{8}\right)^2=\left[\left(\frac{1}{4}\right)^2\right]^3:\left[\left(\frac{1}{2}\right)^3\right]^2=\left(\frac{1}{4}\right)^6:\left(\frac{1}{2}\right)^6=\left(\frac{1}{4}:\frac{1}{2}\right)^6=\left(\frac{1}{2}\right)^6\)