Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐẶT : \(A=1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{100}\)
TA ĐỔI : \(A=2-1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{100}\)
\(A=2-1-\frac{1}{100}\)
\(A=\frac{200}{100}-\frac{100}{100}-\frac{1}{100}\)
\(A=\frac{99}{100}\)
ĐÁP ÁN ĐÂY, XIN LỖI VÌ MH KO THỂ GIẢI RÕ HƠN
~HOK TỐT~
Ta có :
\(B=\frac{1}{199}+\frac{2}{198}+\frac{3}{197}+...+\frac{198}{2}+\frac{199}{1}\)
\(B=\left(\frac{1}{199}+1\right)+\left(\frac{2}{198}+1\right)+\left(\frac{3}{197}+1\right)+...+\left(\frac{199}{1}-1-1-...-1\right)\)
\(B=\frac{200}{199}+\frac{200}{198}+\frac{200}{197}+...+\frac{200}{200}\) ( phân số cuối là số \(1\) mình viết thành \(\frac{200}{200}\) nha bạn )
\(B=200\left(\frac{1}{2}+...+\frac{1}{198}+\frac{1}{199}+\frac{1}{200}\right)\)
Mình chỉ ra được như này -_-
khỏi ghi lại đề nha
A=1-1/2+1/2-1/3+1/3-1/4+......+1/49-1/50
A=1-1/50
A=49/50
\(=-\left(1-\frac{1}{2^2}\right).\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)....\left(1-\frac{1}{100^2}\right)\)
\(=-\left(\frac{1.3}{2.2}\right)\left(\frac{2.4}{3.3}\right)\left(\frac{3.5}{4.4}\right)....\left(\frac{99.101}{100.100}\right)\)
\(=-\left(\frac{1.2.3...99}{2.3.4...100}\right)\left(\frac{3.4.5...101}{2.3.4...100}\right)\)
\(=-\left(\frac{1}{100}\right).\left(\frac{101}{2}\right)\)
\(=-\frac{101}{200}\)
K = -3/4.-8/9......-9999/10000
= -(3/4.8/9....9999/10000)
= -(1.3.2.4.....99.101/2^2.3^2.....100^2)
= -(1.2.3.....101).(3.4.5....99)/(2.3.4.....100).(2.3.4....100)
= -(101/2.100)
= -101/200
a)\(A=\frac{31}{23}-\left(\frac{7}{32}+\frac{8}{2}\right)vaB=\left(\frac{1}{3}+\frac{12}{67}+\frac{13}{41}\right)-\left(\frac{79}{67}-\frac{28}{41}\right)\)
+)Ta có:\(A=\frac{31}{23}-\left(\frac{7}{32}+\frac{8}{2}\right)\)
\(\Leftrightarrow A=\frac{31}{23}-\left(\frac{7}{32}+\frac{128}{32}\right)\)
\(\Leftrightarrow A=\frac{31}{23}-\frac{135}{32}\)
\(\Leftrightarrow A=\frac{992}{736}-\frac{3105}{736}\)
\(\Leftrightarrow A=\frac{-2113}{736}\left(1\right)\)
+)Ta lại có:\(B=\left(\frac{1}{3}+\frac{12}{67}+\frac{13}{41}\right)-\left(\frac{79}{67}-\frac{28}{41}\right)\)
\(\Leftrightarrow B=\frac{1}{3}+\frac{12}{67}+\frac{13}{41}-\frac{79}{67}+\frac{28}{41}\)
\(\Leftrightarrow B=\frac{1}{3}+\left(\frac{12}{67}-\frac{79}{67}\right)+\left(\frac{13}{41}+\frac{28}{41}\right)\)
\(\Leftrightarrow B=\frac{1}{3}+\frac{-67}{67}+\frac{41}{41}\)
\(\Leftrightarrow B=\frac{1}{3}+\left(-1\right)+1\)
\(\Leftrightarrow B=\frac{1}{3}\left(2\right)\)
+)Từ (1) và (2)
\(\Leftrightarrow A< 0< B\Leftrightarrow A< B\)
Vậy A<B
b)\(\frac{200420042004}{200520052005}va\frac{2004}{2005}\)
+)Ta có \(\frac{200420042004}{200520052005}=\frac{2004.100010001}{2005.100010001}=\frac{2004}{2005}\)
\(\Leftrightarrow\frac{200420042004}{200520052005}=\frac{2004}{2005}\)
c)\(C=\frac{2020^{2006}+1}{2020^{2007}+1}vaD=\frac{2020^{2005}+1}{2020^{2006}+1}\)
\(C=\frac{2020^{2006}+1}{2020^{2007}+1}< 1\)
\(\Leftrightarrow C< \frac{2020^{2006}+1+2019}{2020^{2007}+1+2019}=\frac{2020^{2006}+2020}{2020^{2007}+2020}=\frac{2020.\left(2020^{2005}+1\right)}{2020.\left(2020^{2006}+1\right)}=\frac{2020^{2005}+1}{2020^{2006}+1}\)
\(\Leftrightarrow C< D\)
Chúc bạn học tốt
=\(\left(4-2+3\right)\cdot\frac{-1}{2}\)
=\(5\cdot\left(\frac{-1}{2}\right)\)
=\(\frac{5\cdot\left(-1\right)}{2}\)
=\(\frac{-6}{2}\)
\(=\left(-3\right)\)
Có 2 trg hợp nhé: Nếu x là dấu nhân thì thực hiện theo phép nhân
Nếu x là ẩn số thì ko làm đc nhé vì ko có kết quả
Nên làm theo trường hợp 1
\(4.\frac{-1}{2}-2.\frac{-1}{2}+3.\frac{-1}{2}\)\(=\)\(\left(\frac{-1}{2}\right).\left(4-2+3\right)=\left(\frac{-1}{2}\right).5=\frac{-1.5}{2}=\frac{-5}{2}\)
\(\frac{x}{2}+\frac{2}{3}=\frac{1}{15}\)
\(\frac{x}{2}=\frac{1}{15}-\frac{2}{3}\)
\(\frac{x}{2}=-\frac{3}{5}\)
Suy ra: x = \(-\frac{3.2}{5}\)
Vậy x=-1,2
Hok tốt ~
đặt \(S=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\)
\(2S=\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}+\frac{1}{101}\)
\(\Leftrightarrow2S-S=\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{101}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(\Leftrightarrow S=\frac{1}{101}-1=-\frac{100}{101}\)