Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1)
a) Xét ∆ vuông ABK và ∆ vuông EBK ta có :
AK = KC
BK chung
=> ∆ABK = ∆EBK ( ch-cgv)
=> AB = BE
=> ∆ABE cân tại B
Mà ABK = EBK
Hay BK là phân giác ABE
=> ∆ABE cân có BK là phân giác
=> BK là trung tuyến đồng thời là đường cao
=> BK\(\perp\)AE
b) Gọi H là giao điểm BK và DC
Xét ∆ vuông AKD và ∆ vuông EKC ta có
AK = KE
AKD = EKC ( đối đỉnh)
=> ∆AKD = ∆EKC ( cgv-gn)
=> AD = EC ( tương ứng)
Mà ∆ABE cân tại B (cmt)
=> AB = AE
Mà AB + AD = BD
BE + EC = BC
=> BD = BC
=> ∆BDC cân tại B
=> BDC = \(\frac{180°-B}{2}\)
Vì ∆ABE cân tại B
=> BAE = \(\frac{180°-B}{2}\)
=> BAE = BDC
Mà 2 góc này ở vị trí đồng vị
=> AE//DC
Vì H là giao điểm DC và BK
=> BH là phân giác DBC
Mà ∆BDC cân tại B (cmt)
=> BK đồng thời là trung tuyến và đường cao
=> BH \(\perp\)DC
Hay BK \(\perp\)DC
Bài 2)
Vì ∆ABC cân tại A
=> AB = AC
=> ABC = ACB
Xét ∆ vuông ABK và ∆ vuông ACE ta có :
AB = AC
A chung
=> ∆ABK = ∆ACE ( ch-gn)
=> ABK = ACE ( tương ứng)
Xét ∆AOB và ∆AOC ta có :
AB = AC
ABK = ACE
AO chung
=> ∆AOB = ∆AOC (c.g.c)
=> BAO = CAO
Hay AO là phân giác BAC
b) Vì ∆AKB = ∆AEC (cmt)
=> AE = AK
Mà AB = AC
=>EB = KC
Xét ∆ vuông KOC và ∆ vuông EOB ta có
EB = KC
EOB = KOC ( đối đỉnh)
=> ∆KOC = ∆EOB ( cgv-gn)
=> OB = OC
=> ∆OBC cân tại O
c) Xét ∆ cân ABC ta có :
AO là phân giác BAC
AI là trung tuyến BC
=> AI đồng thời là phân giác và là đường cao
=> A , O , I thẳng hàng
Cho tam giác abc vuông cân ở a ,m là trung điểm của bc, điểm e nằm giữa m và c.Ke bh,ck vuông với ae (h,k€ae) chứng minh bh=ak.C/m tam giác mbh= tam giác mak.C/m tam giác mhklaf tam giác vuông cân .Vex hình luôn cho mình mình cần gấpkhoang 6 tiênd nữa
Bài thi đó
bn tự lm đi