K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2020

\(A=\left(x-\frac{2}{7}\right)+\left(0,2-\frac{1}{5}y\right)-\left(-1\right)^{2020}\)

=> \(A=\left(x-\frac{2}{7}\right)+\left(0,2-\frac{1}{5}y\right)-1\)

Vì \(\hept{\begin{cases}\left(x-\frac{2}{7}\right)\ge0\forall x\\\left(0,2-\frac{1}{5}y\right)\ge0\forall y\end{cases}}\Rightarrow\left(x-\frac{2}{7}\right)+\left(0,2-\frac{1}{5}y\right)\ge0\forall x,y\)

\(\Rightarrow\left(x-\frac{2}{7}\right)+\left(0,2-\frac{1}{5}y\right)-1\ge-1\forall x,y\)

Dấu " = " xảy ra khi và chỉ khi \(\hept{\begin{cases}x-\frac{2}{7}=0\\0,2-\frac{1}{5}y=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{2}{7}\\y=1\end{cases}}\)

Vậy \(A_{min}=-1\)khi \(\hept{\begin{cases}x=\frac{2}{7}\\y=1\end{cases}}\)

23 tháng 9 2020

a) B = | 2x - 3 | - 7

| 2x - 3 | ≥ 0 ∀ x => | 2x - 3 | - 7 ≥ -7

Đẳng thức xảy ra <=> 2x - 3 = 0 => x = 3/2

=> MinB = -7 <=> x = 3/2

C = | x - 1 | + | x - 3 |

= | x - 1 | + | -( x - 3 ) | 

= | x - 1 | + | 3 - x | ≥ | x - 1 + 3 - x | = | 2 | = 2

Đẳng thức xảy ra khi ab ≥ 0

=> ( x - 1 )( 3 - x ) ≥ 0

=> 1 ≤ x ≤ 3

=> MinC = 2 <=> 1 ≤ x ≤ 3

b) M = 5 - | x - 1 |

- | x - 1 | ≤ 0 ∀ x => 5 - | x - 1 | ≤ 5

Đẳng thức xảy ra <=> x - 1 = 0 => x = 1

=> MaxM = 5 <=> x = 1

N = 7 - | 2x - 1 |

- | 2x - 1 | ≤ 0 ∀ x => 7 - | 2x - 1 | ≤ 7 

Đẳng thức xảy ra <=> 2x - 1 = 0 => x = 1/2

=> MaxN = 7 <=> x = 1/2

11 tháng 7 2019

Trong tập chứa x

Ta thấy: \(-\frac{3}{20}>-\frac{1}{2}>-\frac{1}{4}>-\frac{7}{10}\)

Trong tập chứa y

Ta thấy: \(\frac{11}{21}< \frac{4}{7}< \frac{2}{3}\)

a) Giá trị lớn nhất của x+y khi x lớn nhất  và y lớn nhất

\(\frac{2}{3}+\left(-\frac{3}{20}\right)=\frac{31}{60}\)

b) Giá trị bé nhất của x+y khi x bé nhất và y bé nhất

\(\frac{11}{21}+\left(-\frac{7}{10}\right)=-\frac{3}{20}\)

21 tháng 12 2018

Ta có :  (x-2019)2018 luôn lớn hơn hoặc bằng 0 nên M sẽ luôn lớn hơn hoặc bằng 2018.Vậy giá trị nhỏ nhất của M là 2018

\(M=2018+\left(x-2019\right)^{2018}\ge2018\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(x-2019\right)^2=0\)\(\Leftrightarrow\)\(x=2019\)

Vậy GTNN của \(M\) là \(2018\) khi \(x=2019\)

tym tym :> 

10 tháng 2 2020

 (x-1)200+(y+2)300=0 

(x-1)^200 > 0 ; (y+2)^300>0

=> (x-1)^200 = 0 và (y + 2)^300 = 0

=> x - 1 = 0 và y + 2 = 0

=> x = 1 và y = - 2

thay vào rồi tính như bình thường thôi

10 tháng 2 2020

Vì \(\left(x-1\right)^{200}\ge0\forall x\)\(\left(y+2\right)^{300}\ge0\forall y\)

\(\Rightarrow\left(x-1\right)^{200}+\left(y+2\right)^{300}\ge0\)

mà \(\left(x-1\right)^{200}+\left(y+2\right)^{300}=0\)( giả thiết )

\(\Rightarrow\left(x-1\right)^{200}+\left(y+2\right)^{300}=0\)\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

Thay \(x=1\)và \(y=-2\)vào biểu thức ta được:

\(P=2.1^{100}-5.\left(-2\right)^3+4=2-5.\left(-8\right)+4=2+5.8+4\)

\(=2+40+4=46\)

3 tháng 1 2016

x=11

x=1

b= -1

10 tháng 4 2018

Mình làm được bài 1, 2, 3 rồi. Các bạn giúp bài 4 nhé ! THANK YOU

10 tháng 4 2018

Có: \(\hept{\begin{cases}\left|7x-5y\right|\ge0\\\left|2z-3x\right|\ge0\\\left|xy+yz+zx-2000\right|\ge0\end{cases}}\)

\(\Rightarrow A=\left|7x-5y\right|+\left|2z-3x\right|+\left|xy+yz+zx-2000\right|\ge0\)

Dấu "="....

a)A=(3x^2+1)(x+1)>/0.vậy minA=0 khi và chỉ khi x=-1/3 và x=-1

b)B=(3x-2)(x-4)

31 tháng 12 2018

Câu 1 đề sai

Câu 2: Ta có:\(8^7-2^{18}\)

                 \(=\left(2^3\right)^7-2^{18}\)

                 \(=2^{3.7}-2^{18}\)

                 \(=2^{21}-2^{18}\)

                 \(=2^{17}\left(2^4-2\right)\)

                 \(=2^{17}.14⋮14\)

Nên \(8^7-2^{18}⋮14\)

Vậy \(8^7-2^{18}⋮14\)

31 tháng 12 2018

Cảm ơn anh Incursion_03 đã nhắc nhở nha.

Các bạn cho mình sửa đề chút ạ :

\(\frac{a-b+c}{a+2b-c}\)