Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài tập :
Tính và so sánh :
Giải :
a | n | a1n | n√a |
4 | 2 | 2 | 2 |
81 | 4 | 3 | 3 |
27 | 3 | 3 | 3 |
32 | 5 | 2 | 2 |
Tính và so sánh :
\(a\) | \(n\) | \(a^{\frac{1}{n}}\) | \(\sqrt[n]{a}\) |
4 | 2 | 2 | 2 |
81 | 4 | 3 | 3 |
27 | 3 | 3 | 3 |
32 | 5 | 2 | 2 |
- Nhận xét : \(a^{\frac{1}{n}}=\sqrt[n]{a}\) .
a)
- Vì \(\sqrt{x+3}\) lớn hơn hoặc = 0 với mọi x lớn hơn hoặc = -3
=> A lớn hơn hoặc = 2.
Dấu = xra khi và chỉ khi \(\sqrt{x+3}\)= 0
=> x + 3 = 0
x = -3
Vậy..........
b)
Ta có: B lớn hơn hoặc = / x - 1 / + / x - 3 / = / x - 1 / + / 3 - x /
Mà / x - 1 / + / 3 - x / lớn hơn hoặc = / x - 1 + 3 - x / = /2/ = 2
=> B lớn hơn hoặc = 2.
Dấu = xra khi và chỉ khi : (x-1)(3-x) lớn hơn hoặc = 0 và / x - 2 / = 0. (1)
Giải (1) được x = 2 TM.
Vậy min B = 2 <=> x=2.
\(-\frac{5}{9}\left(\frac{3}{10}-\frac{2}{5}\right)=-\frac{5}{9}\left(\frac{3}{10}-\frac{4}{10}\right)=-\frac{5}{9}.\frac{-1}{10}=\frac{1}{18}\)
\(\frac{1}{2}\sqrt{64}-\sqrt{\frac{9}{25}}+1^{2016}=\frac{1}{2}.8-\frac{3}{5}+1=4+\frac{2}{5}=\frac{22}{5}\)
\(2^8:2^5+3^2.2-12=2^3+9.2-12=8+18-12=8+6=14\)
\(3^x+\sqrt{\frac{16}{81}}-\sqrt{9}+\frac{\sqrt{81}}{3}=9\frac{4}{9}\)
\(3^x+\frac{4}{9}-3+\frac{9}{3}=9\frac{4}{9}\)
\(3^x+\frac{4}{9}-3+3=9\frac{4}{9}\)
\(3^x+\frac{4}{9}=9+\frac{4}{9}\)
\(\Rightarrow3^x=9+\frac{4}{9}-\frac{4}{9}\)
\(3^x=9\)
\(3^x=3^2\)
\(\Rightarrow x=2\)
Vậy \(x=2\)
A = \(\frac{2012-1}{\sqrt{2012}}+\frac{2011+1}{\sqrt{2011}}=\sqrt{2012}-\frac{1}{\sqrt{2012}}+\sqrt{2011}+\frac{1}{\sqrt{2011}}\)
A = \(\sqrt{2012}+\sqrt{2011}+\left(\frac{1}{\sqrt{2011}}-\frac{1}{\sqrt{2012}}\right)=B+\left(\frac{1}{\sqrt{2011}}-\frac{1}{\sqrt{2012}}\right)\)
Mà 2011 < 2012 nên \(\frac{1}{\sqrt{2011}}>\frac{1}{\sqrt{2012}}\Rightarrow\frac{1}{\sqrt{2011}}-\frac{1}{\sqrt{2012}}>0\)
=> A > B
a) Ta có 290>289
<=> \(\sqrt{290}\) > \(\sqrt{289}\)
<=> \(\sqrt{290}\) > 17
Vậy ..........
\(a,290>289\)
\(\Rightarrow\sqrt{290}>\sqrt{289}\)
\(\Rightarrow\sqrt{290}>17\)
\(b,\sqrt{7}+\sqrt{15}< \sqrt{9}+\sqrt{16}\)
\(\Rightarrow\sqrt{7}+\sqrt{15}< 3+4\)
\(\Rightarrow\sqrt{7}+\sqrt{15}< 7\)
a) \(\left|\sqrt{2}-x\right|=\sqrt{2}\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{2}-x=\sqrt{2}\\\sqrt{2}-x=-\sqrt{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\sqrt{2}\end{cases}}}\)
b) \(\left|x+1\right|=\sqrt{3}+2\)
\(\Rightarrow\orbr{\begin{cases}x+1=\sqrt{3}+2\\x+1=-\sqrt{3}-2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{3}+1\\x=-\sqrt{3}-3\end{cases}}\)
\(\sqrt{2}+\sqrt{3}>3\)