Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2, \(\frac{x^2}{2}+\frac{y^2}{3}+\frac{z^2}{4}=\frac{x^2+y^2+z^2}{5}\)
<=>\(\left(\frac{x^2}{2}-\frac{x^2}{5}\right)+\left(\frac{y^2}{3}-\frac{y^2}{5}\right)+\left(\frac{z^2}{4}-\frac{z^2}{5}\right)=0\)
<=>\(\frac{3}{10}x^2+\frac{2}{15}y^2+\frac{1}{20}z^2=0\)
<=>x=y=z=0
4,
a, \(\frac{1}{x\left(x^2+1\right)}=\frac{a}{x}+\frac{bx+c}{x^2+1}\)
=>\(\frac{1}{x\left(x^2+1\right)}=\frac{ax^2+a+bx^2+cx}{x\left(x^2+1\right)}=\frac{\left(a+b\right)x^2+cx+a}{x\left(x^2+1\right)}\)
Đồng nhất 2 phân thức ta được:
\(\hept{\begin{cases}a+b=0\\c=0\\a=1\end{cases}\Leftrightarrow\hept{\begin{cases}b=-1\\c=0\\a=1\end{cases}}}\)
b,a=1/4,b=-1/4
c, a=-1,b=1,c=1
Ta có: \(\hept{\begin{cases}xy+x+y=1\\yz+y+z=3\\xz+x+z=7\end{cases}}\Rightarrow\hept{\begin{cases}xy+x+y+1=2\\yz+y+z+1=4\\xz+x+z+1=8\end{cases}}\Rightarrow\hept{\begin{cases}\left(x+1\right)\left(y+1\right)=2\\\left(y+1\right)\left(z+1\right)=4\\\left(x+z\right)\left(z+1\right)=8\end{cases}}\)
Nhân theo vế:
\(\left[\left(x+1\right)\left(y+1\right)\left(z+1\right)\right]^2=64\Rightarrow\orbr{\begin{cases}\left(x+1\right)\left(y+1\right)\left(z+1\right)=8\\\left(x+1\right)\left(y+1\right)\left(z+1\right)=-8\end{cases}}\)
Thay vào từng trường hợp tìm x;y;z
Bài 1
\(x+y+z=0\)
\(\Leftrightarrow x+y=-z\)
\(\Leftrightarrow\left(x+y\right)^3=-z^3\)
\(\Leftrightarrow x^3+y^3+3xy\left(x+y\right)=-z^3\)
\(\Leftrightarrow x^3+y^3-3xyz=-z^3\) (vì x+y=-z)
\(\Leftrightarrow x^3+y^3+z^3=3xyz\)
Nốt câu c
\(C=\frac{97^3+83^3}{180}-97.83\)
\(=\frac{\left(97+83\right)\left(97^2-97.83+83^3\right)}{180}-97.83\)
\(=\frac{180.\left(97^2-97.83+83^2\right)}{180}-97.83\)
\(=97^2-97.83+83^2-97.83\)
\(=\left(97-83\right)^2=14^2=196\)
1.
a) \(2\left(x+3\right)-x^2-3x=0\)
⇔ \(2\left(x+3\right)-x\left(x+3\right)=0\)
⇔ \(\left(x+3\right)\left(2-x\right)=0\)
⇔ \(\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
b) \(\left(2x+1\right)^2-\left(x-1\right)^2=0\)
⇔ \(\left(2x+1-x+1\right)\left(2x+1+x-1\right)=0\)
⇔ \(3x\left(x+2\right)=0\)
⇔ \(\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
c) \(x^2-4x+3=0\)
⇔ \(x\left(x-1\right)-3\left(x-1\right)=0\)
⇔ \(\left(x-1\right)\left(x-3\right)=0\)
⇔ \(\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
2, a) \(B=\left(2x+3\right)\left(4x^2-6x+9\right)-2\left(4x^3-1\right)-2x\)
⇔ \(B=8x^3+27-8x^3+2-2x=29-2x\)
Tại x = 3
Thì B = 29 - 6 = 23
Bài 1:
\(\frac{97^3+83^3}{180}-97\cdot83=\frac{\left(97+83\right)\left(97^2-97\cdot83+83^2\right)}{180}-97\cdot83\)
\(=97^2-97\cdot83+83^2-97\cdot83=97^2-2\cdot97\cdot83+83^2\)
\(=\left(97-83\right)^2=14^2=196\)
Bài 2:
\(x^2-10x=-25\)
\(\Leftrightarrow x^2-10x+25=0\)
\(\Leftrightarrow\left(x-5\right)^2=0\)
\(\Leftrightarrow x-5=0\Leftrightarrow x=5\)