\(\left\{1;2;3;4;5\right\}\)chọn ngẫu nhiên 3 chữ số để tạo thà...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2016

- Số các số tự nhiên có 5 chữ số khác nhau lập từ X=0;1;2;3;4;5X=0;1;2;3;4;5 là:
5.5!5.5!=600 (số)
- Tập hợp con gồm 5 phần tử của X mà tổng các chữ số chia hết cho 3 là:
{0,1,2,4,5}, {1,2,3,4,5} 
Vậy số các số chia hết cho 3 có 5 chữ số khác nhau tạo bởi các số của X=0;1;2;3;4;5X=0;1;2;3;4;5 là: 4.4!+5!=216 (số). Nên còn lại 600-216=384 (số) không chia hết cho 3.
- Ta có tập hợp M có 600 (số ) nếu lấy hai số thì có C2600(cách).C6002(cách).
- Số cách lấy mà cả hai số đều không chia hết cho 3 là : C2384C3842, nên xác suất để lấy được cả hai số không chia hết cho 3 là : p1=C2384C2600p1=C3842C6002.
- Tóm lại xác suất để chọn hai số từ tập M mà hai số có ít nhất một số chia hết cho 3 là : p=1p1=1C2384C2600

NV
18 tháng 3 2021

"Một số lẻ chữ số 1 và 1 số chẵn chữ số 2" nghĩa là sao nhỉ?

Bạn có thể ghi 1 cách chính xác tuyệt đối đề bài không?

17 tháng 4 2023

C?

28 tháng 1 2017

Đáp án B 

Khi đó

- Số cách chọn chữ số α có 5 cách chọn vì α ≠ 0 .

- Số cách chọn chữ số b có 5 cách chọn vì b ≠ α .

- Số cách chọn chữ số c  cách chọn vì c ≠ α và c ≠ b .

Do đó tập S có 5.5.4 = 100 phần tử.

 

Không gian mẫu là chọn ngẫu nhiên1 số từ tập  S .

Suy ra số phần tử của không gian mẫu là  Ω = C 100 1 = 100 .

Gọi  X  là biến cố "Số được chọn có chữ số cuối gấp đôi chữ số đầu". Khi đó ta có các bộ số là  1 b 2 hoặc  2 b 4  thỏa mãn biến cố  X  và cứ mỗi bộ thì  b có 4 cách chọn nên có tất cả  số thỏa yêu cầu.

Suy ra số phần tử của biến cố  X là Ω X = 8 .

 Vậy xác suất cần tính  P ( X )   =   Ω X Ω = 8 100 = 2 25 .  

 

9 tháng 3 2021

Tổng 5 chữ số bất kì luôn \(\ge0+1+2+3+4=10\) => Mọi chữ số đề \(\le8\)

Nếu X không có 0 tổng 5 chữ số bất kì luôn \(\ge1+2+3+4+5=15\) => Mọi chữ số đều \(\le3\) ---> Vô lý

Vậy X luôn có 0 và không có 9.

Các X bộ số thỏa mãn: 

+) \(\left(0;1;2;3;4;8\right)\) lập được 5.5! = 600 số tự nhiên và  5! + 3.4.4! = 408 số chẵn

+) \(\left(0;1;2;3;5;7\right)\) lập được 5.5! = 600 số tự nhiên và  5! + 4.4! = 216 số chẵn 

+) \(\left(0;1;2;4;5;6\right)\) lập được 5.5! = 600 số tự nhiên và  5! + 3.4.4! = 408 số chẵn

=> Xác suất chọn được số chẵn: \(P=\dfrac{408+408+216}{600\cdot3}=\dfrac{43}{75}\)

3 tháng 1 2017

Đáp án D.

29 tháng 4 2019

Chọn A

Cách 1:

Ta có S là tập hợp các số tự nhiên gồm 9 chữ số được lập từ X = {6;7;8}, trong đó chữ số 6 xuất hiện 2 lần; chữ số 7 xuất hiện 3 lần; chữ số 8 xuất hiện 4 lần nên

 cách xếp 2 chữ số 6 vào 2 trong 9 vị trí

 cách xếp 3 chữ số 7 vào 3 trong 7 vị trí còn lại

Có 1 cách xếp 4 chữ số 8 vào 4 trong 4 vị trí còn lại

Chọn ngẫu nhiên một số từ tập S nên 

Gọi A là biến cố “số được chọn là số không có chữ số 7 đứng giữa hai chữ số 6”

TH1: 2 chữ số 6 đứng liền nhau

Có 8 cách xếp cho số .Trong mỗi cách như vậy có C 7 3  cách xếp chữ số 7 và 1 cách xếp cho các chữ số 8

Vậy có số 8. C 7 3 .1 = 280 số

TH2: Giữa hai số 6 có đúng 1 chữ số và số đó là số 8.

Có 7 cách xếp cho số .Trong mỗi cách như vậy có C 6 3  cách xếp chữ số 7 và 1 cách xếp các chữ số 8

Vậy có 7. C 6 3  = 140 số

TH3: Giữa hai số 6 có đúng 2 chữ số và đó là hai chữ số 8.

Tương tự Có 6. C 5 3 = 60 số

TH4: Giữa hai số 6 có đúng 3 chữ số và đó là ba chữ số 8.

Có 5. C 4 3 = 20 số

TH5: Giữa hai số 6 có đúng 4 chữ số và đó là bốn chữ số 8.

Có 4. C 4 3  = 4 số

Từ đó suy ra 

Xác suất cần tìm là 

Cách 2:

- Số phần tử không gian mẫu 

- Tính số phần tử của biến cố A“số được chọn là số không có chữ số 7 đứng giữa hai chữ số 6”

Xếp 2 số 6 có 1 cách:  

Xếp 3 số 7 vào 2 khoảng  cách ( số cách xếp bằng số nghiệm nguyên không âm của phương trình 

Xác suất cần tìm là 

NV
25 tháng 12 2022

Không gian mẫu: \(A_7^3-A_6^2=180\) số

Các trường hợp số chữ số lẻ nhiều hơn số chữ số chẵn là: 3 chữ số đều lẻ, 2 chữ số lẻ 1 số chữ chẵn

- 3 chữ số đều lẻ: \(A_3^3=3\) số

- 2 chữ số lẻ 1 chữ số chẵn: chọn 2 chữ số lẻ từ 3 chữ số lẻ có \(C_3^2=3\) cách

+ Nếu chữ số chẵn là 0 \(\Rightarrow\) \(3!-2!=4\) cách hoán vị 3 chữ số

+ Nếu chữ số chẵn khác 0 \(\Rightarrow\) có 3 cách chọn chữ số chẵn và \(3!\) cách hoán vị các chữ số

\(\Rightarrow3+3.\left(4+3.3!\right)=69\) số

Xác suất: \(P=\dfrac{69}{180}=\dfrac{23}{60}\)