Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này bạn đã đăng rồi mà? Bạn vui lòng không đăng 1 bài nhiều lần gây loãng box toán!!!
a) Xét (O) có
\(\widehat{ADC}\) là góc nội tiếp chắn \(\stackrel\frown{AC}\)
\(\widehat{PAC}\) là góc tạo bởi tiếp tuyến PA và dây cung AC
Do đó: \(\widehat{ADC}=\widehat{PAC}\)(Hệ quả)
hay \(\widehat{ADP}=\widehat{CAP}\)
Xét ΔADP và ΔCAP có
\(\widehat{ADP}=\widehat{CAP}\)(cmt)
\(\widehat{APD}\) chung
Do đó: ΔADP∼ΔCAP(g-g)
Suy ra: \(\dfrac{PD}{PA}=\dfrac{PA}{PC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(PA^2=PC\cdot PD\)(đpcm)
b, Dễ CM được \(\widehat{PAB}=\widehat{PQB}\) (Cm được 5 điểm P, A, O, Q, B thuộc đường tròn theo tứ giác nt)
Mà \(\widehat{PAB}=\widehat{AFB}\) (góc tạo bởi tia tiếp tuyến và dây cung và góc nt cùng chắn cung \(\stackrel\frown{AB}\))
\(\Rightarrow\) \(\widehat{PQB}=\widehat{AFB}\)
Mà 2 góc ở vị trí đồng vị \(\Rightarrow\) AF // CD (đpcm)
Chúc bn học tốt!